Nitrogen Effect on Mechanical and Tribological Properties of STN 41 5230 Steel Surface Layer

2014 ◽  
Vol 1059 ◽  
pp. 11-17
Author(s):  
Ivan Kováč ◽  
Rastislav Mikuš ◽  
Jozef Žarnovský ◽  
Juraj Ružbarský

The subject-matter of this article is using diffusion processes to obtain chemically stable compounds with a low reactivity and higher mechanical properties in material surface layer. These processes were implemented by remelting the surface of a given material in arc process using a TIG welding method. Nitrogen was used as an alloying element in experiments. The experiment assumed that the dissociation and ionization of gases, enabling the ionization of diffusion processes in the surface layer of remelted steel, will be achieved by means of electric arc. Conditions for the formation of hard and stable structures with required properties should have been created by enriching the surface layer. The STN 41 5230 steel was used in experiments. After remelting, samples were examined on hardness and relative abrasive wear resistance, which are crucial in terms of required properties of given surface layers. In addition to hardness values in the surface layer, also its behaviour inwards the material up to thermally unaffected base material was determined. When remelting in the environment containing nitrogen, the values of examined quantities increased.

2013 ◽  
Vol 801 ◽  
pp. 123-129
Author(s):  
Ivan Kováč ◽  
Rastislav Mikuš ◽  
Róbert Drlička ◽  
Ján Žitňanský

This paper deals with the possibility of applying controlled diffusion processes in the remelting of steel surface layers using the electric arc of non-consumable electrode in the environment enriched with selected elements. The objective was to achieve an increased wear resistance. Boron was used in experiments as an alloying element. An assumption was stated in the experiment design that environment dissociation and ionisation can be achieved using electric arc, allowing diffusion processes initiation in the surface layer of remelted steel. Conditions for hard and stable structures formation with required properties should be achieved by surface layers enriching. Steel grade STN 41 5230 was used in experiments. Hardness and relative abrasive wear resistance values were measured on samples after remelting, being crucial as for required properties of surface layers. Not only hardness values were measured in the remelted layer but also their course inwards the material up to reaching the depth of base material not affected by heat. The metallographic analysis of remelted samples was made as well. A significant increase of parameters observed in the boron remelting environment was found. The dependency of the environment effect on the change of properties and boron content in the remelting environment was observed.


2014 ◽  
Vol 606 ◽  
pp. 253-256 ◽  
Author(s):  
Martin Ovsik ◽  
Petr Kratky ◽  
David Manas ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
...  

This article deals with the influence of different doses of Beta radiation to the structure and mico-mechanical properties of Low-density polyethylene (LDPE). Hard surface layers of polymer materials, especially LDPE, can be formed by radiation cross-linking by β radiation with doses of 33, 66 and 99 kGy. Material properties created by β radiation are measured by micro-hardness test using the DSI method (Depth Sensing Indentation). Individual radiation doses caused structural and micro-mechanical changes which have a significant effect on the final properties of the LDPE tested. The highest values of micro-mechanical properties were reached at radiation dose of 66 and 99 kGy, when the micro-hardness values increased by about 21%. The changes were examined and confirmed by X-ray diffraction.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 823
Author(s):  
Danko Ćorić ◽  
Mateja Šnajdar Musa ◽  
Matija Sakoman ◽  
Željko Alar

The development of cemented carbides nowadays is aimed at the application and sintering of ultrafine and nano-sized powders for the production of a variety of components where excellent mechanical properties and high wear resistance are required for use in high temperature and corrosive environment conditions. The most efficient way of increasing the tribological properties along with achieving high corrosion resistance is coating. Using surface processes (modification and/or coating), it is possible to form a surface layer/base material system with properties that can meet modern expectations with acceptable production costs. Three coating systems were developed on WC cemented carbides substrate with the addition of 10 wt.% Co using the plasma-assisted chemical vapor deposition (PACVD) method: single-layer TiN coating, harder multilayer gradient TiCN coating composed of TiN and TiCN layers, and the hardest multilayer TiBN coating composed of TiN and TiB2. Physical and mechanical properties of coated and uncoated samples were investigated by means of quantitative depth profile (QDP) analysis, nanoindentation, surface layer characterization (XRD analysis), and coating adhesion evaluation using the scratch test. The results confirm the possibility of obtaining nanostructured cemented carbides of homogeneous structure without structural defects such as eta phase or unbound carbon providing increase in hardness and fracture toughness. The lowest adhesion was detected for the single-layer TiN coating, while coatings with a complex architecture (TiCN, TiBN) showed improved adhesion.


1984 ◽  
Vol 44 ◽  
Author(s):  
Cheng T. Lee ◽  
D. E. Clark

AbstractZeta potentials of SRL-131-29.8% TOS simulated nuclear waste glasses leached in D.I. water, Al, Ca, Mg, and Zn chloride solutions at 90°C were measured as a function of leaching time. For short term leaching, the adsorption of Ca, Mg, Zn and Al reverses the glass surface potential from negative to positive. Colloids were found to be stable in D.I. water and AICl3 solutions after leaching, presumably due to the electrostatic repulsion between the glass surface and similarly charged particles. Colloids were not found in Mg, Zn or Ca chloride solutions after leaching; instead, a relatively thick metasilicate surface layer was formed on glass surfaces leached in these solutions. The concentration of Si in solution is reduced by the formation of these surface layers.


2014 ◽  
Vol 225 ◽  
pp. 131-138
Author(s):  
Jarosław Chmiel ◽  
Jolanta Baranowska ◽  
Roman Jędrzejewski ◽  
Arkadiusz Rzeczycki

Cavitation attack in liquids generated a various states of stresses in surface layers of metals. Differences in stress state effects on hydrogen absorption activated by the cavitation implosion. Results of XRD investigation and FEM modeling shows on inhomogenity of process.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 483
Author(s):  
Tomasz Czarnecki ◽  
Kacper Bloch

The subject of this work is the analysis of methods of detecting soiling of photovoltaic panels. Environmental and weather conditions affect the efficiency of renewable energy sources. Accumulation of soil, dust, and dirt on the surface of the solar panels reduces the power generated by the panels. This paper presents several variants of the algorithm that uses various statistical classifiers to classify photovoltaic panels in terms of soiling. The base material was high-resolution photos and videos of solar panels and sets dedicated to solar farms. The classifiers were tested and analyzed in their effectiveness in detecting soiling. Based on the study results, a group of optimal classifiers was defined, and the classifier selected that gives the best results for a given problem. The results obtained in this study proved experimentally that the proposed solution provides a high rate of correct detections. The proposed innovative method is cheap and straightforward to implement, and allows use in most photovoltaic installations.


2019 ◽  
Vol 62 (10) ◽  
pp. 796-802
Author(s):  
V. V. Myl’nikov ◽  
D. I. Shetulov ◽  
O. B. Kondrashkin ◽  
E. A. Chernyshov ◽  
A. I. Pronin

Fatigue strength of widely used engineering structural steels was  studied at various frequencies of loading according to the scheme of  cantilever bending of the rotating cylindrical samples. Fatigue resistance index is tangent of angle of inclination of fatigue curve to axis  of longevity. It is established that 40 and 45 steels belong to the group  of materials in which decrease in frequency of loading leads to cyclic  softening and decrease in fatigue resistance, which is numerically expressed by increasing slope of fatigue curve. Tests of the samples made  of 40X steel had shown that increase in frequency of loading cycles  leads to a noticeable decrease in slope of fatigue curve parameter, i.e.  to an increase in fatigue resistance. Decrease in fatigue resistance parameter is associated with an increase in hardening of material of the  samples (parts) surface layers which reduces fatigue damage to the  surface itself. Dependence of the fatigue curve slope tangent on surface damage at changing loading cycles frequency is shown and it is  stated that, regardless of frequency, damage of material surface layers  increases along the slope of fatigue curve. For each of these groups  mathematical relations are defined. The correlation coefficient providing degree of convergence of experimental results with the constructed fatigue curve was adopted as a criterion of cyclic behavior stability  of steels. It is revealed that increase in behavior stability of 40X steel  is observed with increase in cyclic deformation rate. Tests of 45  steel  have shown that decrease in cyclic strength with increase in loading  frequency does not affect fatigue stability of material. Increased dispersion of experimental results was observed in 40 steel at low loading  frequency, despite the high values of cyclic strength at given loading  frequency. On the basis of conducted experiments, dynamics of behavior of real machine parts and structures subjected to cyclic loads  operating was determined in the studied loading spectrum.


2021 ◽  
Vol 21 (1) ◽  
pp. 32-48
Author(s):  
Svetlana S. Popova ◽  
◽  
Hussein Ali Hussein ◽  
Lyubov’ N. Olshanskaya ◽  
Sergei V. Arzamastsev ◽  
...  

It was established that at the cathodic treatment of titanium in aqueous dimethyl sulfoxide solutions of sodium molybdate, containing phosphoric acid, at the potential of the cathodic incorporation of sodium (Ec = −2.6 V) in the potentiostatic mode, the composition formed on the electrode surface layer depended not only on the composition of the solution, but also on the volume ratio of the aqueous electrolyte solution and the organic solvent (dimethyl sulfoxide).


Sign in / Sign up

Export Citation Format

Share Document