The Effect of Substrate on TiO2 Thin Films Deposited by Atomic Layer Deposition (ALD)

2015 ◽  
Vol 1087 ◽  
pp. 147-151 ◽  
Author(s):  
Rosniza Hussin ◽  
Kwang Leong Choy ◽  
Xiang Hui Hou

ALD is a precision growth technique that can deposit either amorphous or polycrystalline thin films on a variety of substrates. The difference in substrate can cause a variation in the ALD process, even it is carried out using the same reactants and deposition conditions [1]. TiO2thin films were grown using TTIP (Titanium isopropoxide) ALD on silicon wafers, glass slides, and stainless steel plates in order to study the effect of substrates on the growth of TiO2with 3,000 deposition cycles, at 300°C.The thin films were analyzed using Xray Diffraction (XRD), Raman Spectroscopy, Atomic Force Microscope (AFM) and Spectroscopic Ellipsometer. From XRD analysis were indicates the main peak for anatase (101) (2θ= 25.3) was observed from the XRD patterns for TiO2on all substrates. The results show that crystalline TiO2thin films can easily grow on a crystal substrate rather than on an amorphous substrate.

2016 ◽  
Vol 1133 ◽  
pp. 352-356 ◽  
Author(s):  
Rosniza Hussin ◽  
Kwang Leong Choy ◽  
Xiang Hui Hou

Ceramic oxide thin films are an important material, with applications in many areas of science and technology. Titanium oxide (TiO2) is also a well-known and important material for applications such as gas sensors [1], photocatalysis materials [3], and electrochemicals [1], due to its self-cleaning [2], good corrosion resistance and biocompatibility. Atomic Layer Deposition (ALD) is a nanotechnology tool that is used for the deposition of nanostructured thin films. The unique advantage of ALD is the self-limiting film growth mechanism, which offers attractive properties, simple and accurate film thickness control, sharp interfaces, uniformity over large areas, excellent conformality, good reproducibility, a multilayer processing capability, and high quality films at low temperatures [3, 4]. TiO2 thin films were grown using TTIP (Titanium isopropoxide) ALD on silicon wafers, glass slides, and stainless steel plates in order to study the effect of substrates on the growth of TiO2. In order to achieve the desired advantages of using TTIP, a series of experiments were performed to study the growth mechanism of TiO2 thin films using TTIP and H2O by ALD.


2006 ◽  
Vol 510-511 ◽  
pp. 670-673 ◽  
Author(s):  
Chong Mu Lee ◽  
Yeon Kyu Park ◽  
Anna Park ◽  
Choong Mo Kim

This paper investigated the effects of annealing atmosphere on the carrier concentration, carrier mobility, electrical resistivity, and PL characteristics as well as the crystallinity of ZnO films deposited on sapphire substrates by atomic layer deposition (ALD). X-ray diffraction (XRD) and photoluminescence (PL) analyses, and Hall measurement were performed to investigate the crystallinity, optical properties and electrical properties of the ZnO thin films, respectively. According to the XRD analysis results, the crystallinity of the ZnO film annealed in an oxygen atmosphere is better than that of the ZnO film annealed in a nitrogen atmosphere. It was found that annealing undoped ZnO films grown by ALD at a high temperature above 600°C improves the crystallinity and enhances UV emission.


1993 ◽  
Vol 335 ◽  
Author(s):  
Debra L. Kaiser ◽  
Mark D. Vaudin ◽  
Greg Gillen ◽  
Cheol-Seong Hwang ◽  
Lawrence H. Robins ◽  
...  

AbstractPolycrystalline thin films of BaTiO3 were deposited on fused quartz substrates at 600°C by metalorganic chemical vapor deposition (MOCVD). The films were characterized by x-ray powder diffraction (XRD), transmission electron microscopy (TEM), secondary ion mass spectroscopy (SIMS) and Raman spectroscopy. Films prepared in the early stages of this study that had appeared to contain only crystalline BaTiO3 by XRD were found to have nonuniform composition and microstructure through the film thickness by SIMS and TEM. The MOCVD system was then modified by installing a process gas bypass apparatus and an elevated pressure bubbler for the titanium isopropoxide precursor. A 1.2 μm thick BaTiO3 film prepared in the modified system demonstrated much improved compositional and microstructural uniformity through the thickness of the film. This film had a columnar microstructure with grain widths of 0.1–0.2 μm and exhibited tetragonality as detected by Raman spectroscopy.


2012 ◽  
Vol 329 ◽  
pp. 159-164 ◽  
Author(s):  
Rosniza Hussin ◽  
Xiang Hui Hou ◽  
Kwang Leong Choy

Atomic Layer Deposition (ALD) Offers the Key Benefits of Precise Deposition of Nanostructured Thin Films with Excellent Conformal Coverage. ALD Is Being Used in the Semiconductor Industry for Producing High-k (high Permittivity) Gate Oxides and High-K Memory Capacitor Dielectrics. Zno Has Attractive Properties for Various Applications such as Semiconductors, Gas Sensors and Solar Cells. in this Study, ZnO Thin Films Were Deposited via ALD Using Alternating Exposures of Diethyl Zinc (DEZ) and Deionized Water (H2O) on Silicon Wafer (100). the Thin Films Were Analyzed Using X-Ray Diffraction (XRD), Ellipsometer and Atomic Force Microscope (AFM). the XRD Analysis Shows the Presence of ZnO Thin Films with a Hexagonal Wurtzite Structure. the Thickness of ZnO Thin Films Was Correlated with the Substrate Temperatures and Deposition Cycles. the Coating Thickness Was Found to Increase with the Increase of the Deposition Cycles, but it Decreased with the Increase of Deposition Temperature. the Nucleation and Growth Mechanism of Zno Thin Film Has Been Established. it Can Be Concluded that, the Growth Mechanism of Zno Films Is Strongly Dependent on the ALD Processing Conditions.


2019 ◽  
Vol 807 ◽  
pp. 176-181
Author(s):  
Hui Sheng Zhou ◽  
Xing Hua Xie ◽  
Shao Bo Yan ◽  
Zeng Yuan Li

This investigation promotes the design of emulsion explosives and the development of detonation theory on a microscale. As the total composition of oxidizing and reducing elements of the reactants leave related to the thermochemistry of the system, the computational details of predicting the temperatures of detonation were introduced. It was found that a significant improvement was achieved in the emulsion explosives with an aquiferous system. An improvement in the detonation synthesis of nanolithium and zinc oxides is due to the formation of an activated matrix of the metal nitrates’ oxidizer with the corresponding fuel. Temperatures of detonation of emulsion explosives and explosive formulations are predicted using thermochemistry information. The methodology assumes that the heat of detonation of an explosive compound of composition CaHbNcOdLieZnf can be approximated as the difference between the heats of formation of the detonation products and that of the explosive, divided by the formula weight of the explosive. For the calculations in which the first set of decomposition products is assumed, predicted temperatures of detonation of emulsion explosives with the product H2O in the gas phase have a deviation of 413.66 K from results with the product H2O in the liquid state. Fine-particle lithium and zinc oxides have been prepared by the detonation of emulsion explosives of the metal nitrates, M (NO3) x (M = Li, Zn) as oxidizers and paraffine as fuels, at high temperature and short reaction time. The detonation products were identified from X-ray powder diffraction (XRD) patterns, and transmission electron microscopy (TEM) measurements. XRD analysis shows that nanoparticles of lithium and zinc oxides can be produced from detonation of emulsion explosives due to fast quenching as well as appropriate detonation velocity and temperature.


2003 ◽  
Vol 779 ◽  
Author(s):  
Lucia Nicola ◽  
Erik Van der Giessen ◽  
Alan Needleman

AbstractThermal stress evolution in polycrystalline thin films is analyzed using discrete dislocation plasticity. Stress develops in the film during cooling from a stress-free configuration due to the difference in thermal expansion coefficient between the film and its substrate. A plane strain formulation with only edge dislocations is used and each grain of the polycrystal has a specified set of slip systems. The film–substrate interface and the grain boundaries are impenetrable for the dislocations. Results are presented for two film thicknesses, with higher hardening seen for the thinner films.


2018 ◽  
Vol 21 (1) ◽  
pp. 5-13 ◽  
Author(s):  
Mostafa Fathollahi ◽  
Shahnaz Rostamizadeh ◽  
Ali M. Amani

Aim and Objective: The present study has developed an efficient and eco-friendly protocol for the synthesis of aryl-14-H-dibenzo[a,j] xanthenes through a one-pot condensation reaction of 2-naphthol and arylaldehydes in aqueous media using the nanocatalytic MCM-41-SO3H under ultrasonic illumination. Material and Methods: Using SEM and XRD analyses, MCM-41-SO3H nanoparticles were characterized. Therefore, for high magnification, taking the SEM image, the mesoporous surface of MCM-41-SO3H nanoparticles coated with gold for 2 minutes was characterized. Moreover, at a scan rate of 0.02° (2Θ)/sec, XRD analysis from 1.5° (2Θ) to 10.0° (2Θ) was performed. Result: For our considered sample, some well-ordered XRD patterns with one main peak as well as three minor peaks equal to those of MCM-41 materials were observed. Conclusion: The suggested route demonstrates very promising properties like higher yields, decrease in the time of reaction (5-10 min), mild and straightforward conditions, low level of toxicity, and inclusion of a cost-efficient and ecofriendly catalyst having considerable reusability.


APL Materials ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 081104
Author(s):  
Michael P. Mueller ◽  
Katrin Pingen ◽  
Alexander Hardtdegen ◽  
Stephan Aussen ◽  
Andreas Kindsmueller ◽  
...  

2011 ◽  
Vol 306-307 ◽  
pp. 1402-1405 ◽  
Author(s):  
Jia Song ◽  
Hai Chuan Mu ◽  
Lai Xing Jiang ◽  
Gui Lin Yin ◽  
Zhen Yu ◽  
...  

Al-doped ZnO (AZO) thin films (~100nm) with low electrical resistivity and high transparency have been prepared by atomic layer deposition on glass and Si(111) substrates at 200 °C with different doping sequence. The films were systematically analyzed using X-ray diffraction, scanning electron microscope (SEM), UV-vis spectroscopy and Hall measurement. XRD patterns showed that all the films were well crystallized with hexagonal wurtzite structure with preferred orientation along (100) plane. The resisitivity of films deposited with doping sequence of DEZ/TMA/H2O was lower than that with other doping sequences. Results from SEM showed a worm-like shape and similar grain sizes of AZO films. Optical transparency of AZO films was measured to be >90% for wavelengths of 400-1000 nm.


2006 ◽  
Vol 911 ◽  
Author(s):  
Carey M. Tanner ◽  
Jun Lu ◽  
Hans-Olof Blom ◽  
Jane P. Chang

AbstractHighly oriented ?-Al2O3 thin films on 4H-SiC were engineered to demonstrate their potential as a crystalline high-k gate dielectric in SiC power MOSFETs. As-deposited Al2O3 thin films grown on 4H-SiC (0001) by thermal atomic layer deposition (ALD) were amorphous as determined by in-situ reflection high-energy electron diffraction (RHEED). Upon annealing in N2 at 1100°C, the film crystallized to the ?-Al2O3 phase as observed by RHEED, high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). Based on Fourier transforms of the HRTEM image, an epitaxial relationship of ?-Al2O3 (111) on 4H-SiC (0001) was observed in which ?-Al2O3 (-110) is oriented with 4H-SiC (-12-10). This orientation was further confirmed by XRD analysis in which only the ?-Al2O3 (111) and (222) peaks were observed. An abrupt interface of both amorphous and crystalline Al2O3 with 4H-SiC was determined by HRTEM.


Sign in / Sign up

Export Citation Format

Share Document