Feasibility Study of Isolated PV-Wind Hybrid System in Egypt

2015 ◽  
Vol 1092-1093 ◽  
pp. 145-151 ◽  
Author(s):  
Samir Mohammed Dawoud ◽  
Xiang Ning Lin ◽  
Jin Wen Sun ◽  
Merfat Ibrahim Okba ◽  
Muhammad Shoaib Khalid ◽  
...  

This paper proposes the possibility of using the diesel generator with renewable energy sources (RES) and compares the cost of energy of isolated pv-wind-diesel-battery-converter hybrid system with a stand-alone diesel generator for a rural region in Egypt. The isolated system is also evaluated to find out the quantity of air pollution. The system has to supply a load with an average value of 48 kW and a peak value of 71 kW. HOMER software is used to carry out the cost of energy (COE), net present cost (NPC) and environmental emissions (Kg/yr) calculations of optimization model. The simulation results show that the proposed hybrid system is very economical and environment friendly. The COE for the isolated hybrid power system is found to be 0.139 $/kWh which is more than half of the stand alone diesel generator system.

Author(s):  
Peter Ozaveshe Oviroh ◽  
Tien-Chien Jen ◽  
Nosa Idusuyi ◽  
Olushola Gbadeyan

The rapid increase in global communication infrastructure in developing countries has drawn significant attention to the telecom sector. However, the dismal performance of the power sector in some countries like Nigeria poses a great challenge to the telecom industry which requires a reliable, efficient and environmentally friendly energy supply. Unstable electric grids, an erratic power supply, non-availability of trained and skilled personnel, and a prohibitive cost of site maintenance cumulatively have increased the need to harness abundant renewable energy sources, such as solar and wind. A comparative study of the viability of solar-diesel hybrid against diesel-only generator systems in powering a base station using the cost of kilowatt hour (kWh) self-generated electricity and levelised cost of energy (LCOE) was undertaken using data from some sites located in the Southwest (SW) and the Northeast (NE) regions of Nigeria. Homer Pro Software was used in data analysis. The results obtained showed that with a hybrid energy system (solar and diesel generator), there were 79% savings in fuel consumption, 83.2% savings in operation and maintenance cost for the hybrid energy system in the SW. The savings on fueling as a result of the use of hybrid systems was 86%, and the carbon footprint reduction was 76%. Furthermore, the cost of operation was reduced by 51% for Northeast. The LCOE for the solar hybrid system was determined to be $1.44 for NE1A and NE1B while that of NE2A was $1.46 and NE2B $1.47.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Hussein A. Kazem ◽  
Ali H. A. Al-Waeli ◽  
Atma H. K. Al-Kabi ◽  
Asma Al-Mamari

Photovoltaic (PV) systems have been used globally for a long time to supply electricity for water pumping system for irrigation. System cost drops down with time since PV technology, efficiency, and design methodology have been improved and cost of wattage drops dramatically in the last decade. In the present paper optimum PV system design for water pumping system has been proposed for Oman. Intuitive and numerical methods were used to design the system. HOMER software as a numerical method was used to design the system to come up with optimum design for Oman. Also, REPS.OM software has been used to find the optimum design based on hourly meteorological data. The daily solar energy in Sohar was found to be 6.182 kWh/m2·day. However, it is found that the system annual yield factor is 2024.66 kWh/kWp. Furthermore, the capacity factor was found to be 23.05%, which is promising. The cost of energy and system capital cost has been compared with that of diesel generator and systems in literature. The comparison shows that the cost of energy is 0.180, 0.309, and 0.790 USD/kWh for PV-REPS.OM, PV-HOMER, and diesel systems, respectively, which sound that PV water pumping systems are promising in Oman.


Author(s):  
Saleh Al Saadi ◽  
Moncef Krarti

This paper summarizes the findings from a feasibility study of using renewable energy sources in combination with conventional power systems to meet the electrical requirements for an isolated island of Masirah in Oman. The study has been conducted to determine the best hybrid system to generate electrical energy needed for a small community of 500 residential buildings. A series of a simulation analyses have been carried out to evaluate and optimize different distribution technologies including photovolatics, wind and diesel for electrical generation in combination with storage batteries. It was found that the cost of energy could be reduced by as much as 48% compared to the cost for the baseline generation system currently used in the Masirah Island (i.e. diesel-driven generators). In particular, it was found that wind turbines in combination with storage batteries have a great impact in reducing the cost of generating electrical energy for the residential community. Moreover, solar PV panels were found unattractive under the current diesel price rates but could potentially become viable if the diesel prices increase. The paper outlines an optimal design for generating electricity for the community at lowest cost while minimizing carbon emissions.


2022 ◽  
pp. 41-50
Author(s):  
OLEXANDER SHAVOLKIN ◽  
RUSLAN MARCHENKO ◽  
YEVHEN STANOVSKYI ◽  
MYKOLA PIDHAINYI ◽  
HENNADII KRUHLIAK

Purpose. Improving the methodology for determining the parameters of a photoelectric system with a battery for the needs of a local object using archival data of the generation of a photoelectric battery with planning the cost of energy consumption from the network for all seasons of the year.Methodology. Using an archive of data on the power generation of a photoelectric battery and analysis of energy processes in a photoelectric system with a battery using computer simulation.Findings. Calculated according to the archive data for five years, the average monthly values of photoelectric battery generation power for time intervals during the day determined according to tariff zones. Dependencies to determine the recommended average value load power of a local object at time intervals.Originality. It is proposed to determine the base schedule of the local facility and the parameters of the photoelectric system based on the average monthly values of photoelectric battery generation in the transition seasons – October, March and the expected cost of energy consumed from the grid during the year. The recalculation of the base value of power during the year is substantiated taking into account the duration of daylight. A method for determining the recommended load schedule of a local object with the formation of the battery charge according to the average monthly value of the photoelectric battery generation power at time intervals during the day, which are determined by archival data for the object location.Practical value. The obtained solutions are the basis for designing photoelectric systems with a battery to meet the needs of local objects.


Author(s):  
Swathi Kumar ◽  
Richard Blanchard

Around 14% of the global population does not have access to electricity. About 95% of those are living in rural Sub-Saharan Africa. Often in these regions, diesel generators are the only source of electricity. The operating cost of these diesel generators is high. However, solar and wind energy are available in most of African countries. This study presents the analysis of designing an off-grid hybrid system with a wind turbine, PV, diesel generator, and battery to power a hospital, school, and 200 household village in four locations across Somalia. The research investigated the availability of wind-solar resources in selected locations. Designing of the system and economic-technical calculations were performed using HOMER. The selection of the optimum design was based on the Cost of Electricity and Net Present Cost. The results show that for Kabaal and Ceel Buur, a WT-PV-DG-Battery is the optimal system as the wind resource in these regions is high. For Saakov and Baki, a PV-DG-Battery system proves to be optimum as the wind resource is limited here. The study also evaluated the control strategy and proved that combined dispatch was the most cost-effective for these locations. The study concluded that hybrid systems are more economical than diesel systems.


Author(s):  
Venkatachalam K M ◽  
V Saravanan

<p>The co-ordination of non-conventional energy technologies such as solar, wind, geothermal, biomass and ocean are gaining significance in India due to more energy requirements and high greenhouse gas emission. In this assessment, the sustainability of emerging the gird isolated hybrid solar photovoltaic (PV)/wind turbine (WT)/diesel generator (DG)/battery system for Arunai Engineering College (India) building is evaluated. The techno- economic and environmental research was inspected by HOMER Pro software by choosing the optimal combination depends on size of the components, renewable fraction, net present cost (NPC), cost of energy (COE) and greenhouse gas (GHG) emission of the hybrid system. From the acquired outcomes and sensitivity investigation, the optimal PV-WT-DG- Battery combination has a NPC of $28.944.800 and COE $0.1266/kWh, with an operating cost of $256.761/year. The grid isolated hybrid system is environmentally pleasant with a greenhouse gas emission of 2.692 kg/year with renewable fraction of 99.9%.</p>


2019 ◽  
Vol 87 ◽  
pp. 01007 ◽  
Author(s):  
Surender Reddy Salkuti

This paper proposes a new optimal operation of Microgrids (MGs) in a distribution system with wind energy generators (WEGs), solar photovoltaic (PV) energy systems, battery energy storage (BES) systems, electric vehicles (EVs) and demand response (DR). To reduce the fluctuations of wind, solar PV powers and load demands, the BES systems and DR are utilized in the proposed hybrid system. The detailed modeling of WEGs, solar PV units, load demands, BES systems and EVs has been presented in this paper. The objective considered here is the minimization of total operating cost of microgrid, and it is formulated by considering the cost of power exchange between the main power grid and microgrid, cost of wind and solar PV energy systems, cost of BES systems, EVs and the cost due to the DR in the system. Simulations are performed on a test microgrid, and they are implemented using GAMS software. Various case studies are performed with and without considering the proposed hybrid system.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Majid K. Abbas ◽  
Qusay Hassan ◽  
Marek Jaszczur ◽  
Zuhair S. Al-Sagar ◽  
Ali N. Hussain ◽  
...  

Abstract The paper presents a technical and economic analysis for two energy systems (conventional and renewable) with grid connection. The investigation was carried out using an experimental measurement for the desired load and weather data (solar irradiance and ambient temperature), were 5.1 kWh the daily energy consumption as measured and 4.6 kWh/m2/day the annual average of the solar irradiance. The simulation process was done by using MATLAB and HOMER software at a 1 min time step resolution. The economic optimization objective presented for two energy system scenarios (i) photovoltaic/grid and (ii) diesel/grid, takes into account the economic aspects and component prices based on the Iraqi market and regulations. The diesel generator, very popular in rural areas, is designed to work during the same period as the photovoltaic system (only during day hours). The yearly operating hours were recorded at 4380 h/year, and energy generation was approx. 2349 kWh/year while fuel consumption was 1826 L/year. The results showed that the photovoltaic system in scenario (i) can generate about 7895 kWh, and for the diesel generator in scenario (ii), it can generate approximately 2346 kWh. Furthermore, for scenario (i) the levelized net present cost is $1079 and the cost of energy is about $0.035/kWh, while for scenario (ii) the levelized net present cost is $12,287 and the cost of energy is $0.598/kWh. The use of solar energy is highly recommended compared to diesel generators due to the lowest cost and delivery of energy to the grid. Furthermore, it can capture carbon dioxide by about 5295 kg/year.


2015 ◽  
Vol 4 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Qais H. Alsafasfeh

Most recent research on renewable energy resources main one goal to make Jordan less dependent on imported energy with locally developed and produced solar power, this paper discussed the efficient system of Wind/ PV Hybrid System to be than main power sources for south part of Jordan, the proposed hybrid system design based on Smart Grid Methodology,  the solar energy will be installed on top roof of  electricity subscribers across the Governorate of Maan, Tafila, Karak and Aqaba and the wind energy will set in one site by this way the capital cost for project will be reduced also the  simulation result show   the feasibility  is a very competitive and feasible cost . Economics analysis of a proposed renewable energy system was made using HOMER simulation and evaluation was completed with the cost per kilowatt of EDCO company, the net present cost is $2,551,676,416, the cost of energy is 0.07kWhr with a renewable fraction of 86.6 %.


2021 ◽  
Author(s):  
Nishant Kumar ◽  
Kumari Namrata

Abstract Background: The EV (Electric Vehicles) is rapidly growing as a substitute to oil dependant vehicles to minimize the pollutant and greenhouse gas (GHS) emissions. Various charging schemes and grid integration techniques are introduced to minimize the impacts of EV charging. Hence, this study introduced a system that uses renewable energy sources (RES) like solar energy, biomass and battery for EV charging.Objective: This study intended to calculate the cost of the system design as well as variations in its cost during the usage on an annual basis. In addition, it used various energy conversion technologies such as solar panel, battery and biomass to find the effective source of energy for EV charging through the proposed novel Optimal Firefly Algorithm (OFA). Methodology: An initial setup is made that consists of number of buildings, overall load demand, ratings of EV charging, storage capacity, grid intake and solar panel. Then, the proposed novel OFA is used to find the count of EVs that gets charged from the charging stations and its choice of charging from the charging stations. The computation is performed on an annual basis for the cost, energy and count of EVs that arrive to the charging stations to get it charged. Results: The proposed methodology is used to compare the efficiency of the solar, biomass and battery efficiency in charging an EV through computation of Net present cost, Cost of Energy, EV savings and power generation. The results revealed that that the proposed system is effective than the traditional methods and effectively identified that the solar energy is the effective source for EV charging.


Sign in / Sign up

Export Citation Format

Share Document