Punching Analysis of a Flat Slab with a Change in Elevation

2015 ◽  
Vol 1106 ◽  
pp. 233-236
Author(s):  
Jan Nováček ◽  
Miloš Zich

In recent years, construction of buildings with concrete flat slabs has developed widely. For these structures, correct punching design is crucial. Suitable punching check methods for most common details are provided in all standards. In some cases, however, it is necessary to use a detail that is not fully covered in effective codes. In the article, the change in elevation at a column line detail of a flat slab is analysed. Attention is paid to possible ways of inner forces interpretation and to their subsequent check in accordance with standards. Several linear models and one nonlinear model were created and compared against each other.

Author(s):  
Neophytos Chiras ◽  
Ceri Evans ◽  
David Rees

This paper examines the estimation of a global nonlinear gas turbine model using NARMAX techniques. Linear models estimated on small-signal data are first examined and the need for a global nonlinear model is established. A nonparametric analysis of the engine nonlinearity is then performed in the time and frequency domains. The information obtained from the linear modelling and nonlinear analysis is used to restrict the search space for nonlinear modelling. The nonlinear model is then validated using large-signal data and its superior performance illustrated by comparison with a linear model. This paper illustrates how periodic test signals, frequency domain analysis and identification techniques, and time-domain NARMAX modelling can be effectively combined to enhance the modelling of an aircraft gas turbine.


1954 ◽  
Vol 21 (3) ◽  
pp. 263-270
Author(s):  
S. Woinowsky-Krieger

Abstract A solution is given in this paper for the problem of bending of an infinite flat slab loaded uniformly and rigidly clamped in square-shaped columns arranged to form the square panels of the slab. The complex variable method in connection with conformal mapping is used for this aim. Although not perfectly rigorous, the solution obtained is sufficiently accurate for practical purposes and, besides, it can be improved at will. Stress diagrams traced in a particular case of column dimensions do not wholly confirm the stress distribution, generally accepted in design of flat slabs.


2014 ◽  
Vol 11 (7) ◽  
pp. 1817-1831 ◽  
Author(s):  
Y. P. Wang ◽  
B. C. Chen ◽  
W. R. Wieder ◽  
M. Leite ◽  
B. E. Medlyn ◽  
...  

Abstract. A number of nonlinear models have recently been proposed for simulating soil carbon decomposition. Their predictions of soil carbon responses to fresh litter input and warming differ significantly from conventional linear models. Using both stability analysis and numerical simulations, we showed that two of those nonlinear models (a two-pool model and a three-pool model) exhibit damped oscillatory responses to small perturbations. Stability analysis showed the frequency of oscillation is proportional to √(ϵ−1−1) Ks/Vs in the two-pool model, and to √(ϵ−1−1) Kl/Vl in the three-pool model, where ϵ is microbial growth efficiency, Ks and Kl are the half saturation constants of soil and litter carbon, respectively, and /Vs and /Vl are the maximal rates of carbon decomposition per unit of microbial biomass for soil and litter carbon, respectively. For both models, the oscillation has a period of between 5 and 15 years depending on other parameter values, and has smaller amplitude at soil temperatures between 0 and 15 °C. In addition, the equilibrium pool sizes of litter or soil carbon are insensitive to carbon inputs in the nonlinear model, but are proportional to carbon input in the conventional linear model. Under warming, the microbial biomass and litter carbon pools simulated by the nonlinear models can increase or decrease, depending whether ϵ varies with temperature. In contrast, the conventional linear models always simulate a decrease in both microbial and litter carbon pools with warming. Based on the evidence available, we concluded that the oscillatory behavior and insensitivity of soil carbon to carbon input are notable features in these nonlinear models that are somewhat unrealistic. We recommend that a better model for capturing the soil carbon dynamics over decadal to centennial timescales would combine the sensitivity of the conventional models to carbon influx with the flexible response to warming of the nonlinear model.


2017 ◽  
Vol 9 (1) ◽  
pp. 82-93 ◽  
Author(s):  
James D. Turner ◽  
Michael J. Mazzoleni ◽  
Jared A. Little ◽  
Dane Sequeira ◽  
Brian P. Mann

Summary Study aim: Mathematical models of the relationship between training and performance facilitate the design of training protocols to achieve performance goals. However, current linear models do not account for nonlinear physiological effects such as saturation and over-training. This severely limits their practical applicability, especially for optimizing training strategies. This study describes, analyzes, and applies a new nonlinear model to account for these physiological effects. Material and methods: This study considers the equilibria and step response of the nonlinear differential equation model to show its characteristics and trends, optimizes training protocols using genetic algorithms to maximize performance by applying the model under various realistic constraints, and presents a case study fitting the model to human performance data. Results: The nonlinear model captures the saturation and over-training effects; produces realistic training protocols with training progression, a high-intensity phase, and a taper; and closely fits the experimental performance data. Fitting the model parameters to subsets of the data identifies which parameters have the largest variability but reveals that the performance predictions are relatively consistent. Conclusions: These findings provide a new mathematical foundation for modeling and optimizing athletic training routines subject to an individual’s personal physiology, constraints, and performance goals.


2020 ◽  
Vol 309 ◽  
pp. 246-251
Author(s):  
Mária Bolešová ◽  
Katarína Gajdošová ◽  
Marek Čuhák

The most used horizontal load-bearing systems in concrete buildings are flat slabs. The effective and economic reconstruction of a locally supported flat slab of an existing building creates a complex task. Shear stress arises near the column and it becomes critical in design with increasing slab slenderness and requires a more detailed calculation. Increasing in the shear resistance of the flat slab can be achieved in various ways. Each method brings different effectiveness, advantages and disadvantages. The most widely used methods of the reconstruction are the increase in the size of the column (therein increasing the control perimeter for displaying the shear stress), the increase in the thickness of the flat slab or reinforcing the slab with shear reinforcement. Bolts and screw anchors (using different mounting angles) can be used as shear reinforcement. Each mentioned reconstruction method should be subjected to numerical calculations and verification of its efficiency. The parametric study presented in this paper is focused on the reconstruction techniques and their verification according to various numerical models. The results from Eurocode 2, fib Model Code 2010 and the new generation of Eurocode 2 are compared to show the differences between them. The aim of this paper is to bring a demonstration of the reconstruction methods that will increase in the shear resistance of the locally supported flat slabs and trying to choose the most effective one.


1987 ◽  
Vol 178 ◽  
pp. 459-475 ◽  
Author(s):  
Charles G. Speziale

The commonly used linear K-l and K-ε models of turbulence are shown to be incapable of accurately predicting turbulent flows where the normal Reynolds stresses play an important role. By means of an asymptotic expansion, nonlinear K-l and K-ε models are obtained which, unlike all such previous nonlinear models, satisfy both realizability and the necessary invariance requirements. Calculations are presented which demonstrate that this nonlinear model is able to predict the normal Reynolds stresses in turbulent channel flow much more accurately than the linear model. Furthermore, the nonlinear model is shown to be capable of predicting turbulent secondary flows in non-circular ducts - a phenomenon which the linear models are fundamentally unable to describe. An additional application of this model to the improved prediction of separated flows is discussed briefly along with other possible avenues of future research.


Author(s):  
Roberto Caracciolo ◽  
Dario Richiedei ◽  
Alberto Trevisani

This paper tackles the problem of designing state observers for flexible link mechanisms: an investigation is made on the possibility of employing observers making use of suitable piecewise-linear truncated dynamics models. A general approach is proposed, which provides an objective way of synthesizing observers preventing the instability that may arise from using reduced-order linearized models. The approach leads to the identification of the regions of the domain of the state variables where the linear approximations of the nonlinear model can be considered acceptable. To this purpose, first of all, the stability of the equilibrium points of the closed-loop system is assessed by applying the eigenvalue analysis to appropriate piecewise-linear models. Admittedly, the dynamics of such a closed-loop system is affected by the pole perturbation caused by spillover, and by the discrepancies between the linearized models of the plant and the one of the observer. Additionally, when nodal elastic displacements and velocities are not bounded in the infinitesimal neighborhoods of the equilibrium points, the difference between the nonlinear model and the locally-linearized one is expressed in terms of unstructured uncertainty and stability is assessed by H∞ robust analysis. The method is demonstrated by applying it to a closed-chain flexible link mechanism.


2019 ◽  
Vol 1 (1) ◽  
pp. 1-14
Author(s):  
Muhammad Zardi

The aim of the tests was to investigate the influence of concrete strength, the eccentricity of the column and the use of shear reinforcement in flat slabs on punching shear. The research specimens are 8 units of flat slabs. Flat slab size 1400 x 1400 mm2 with thickness of 120 mm. Flat slabs were connected with circular column with dimension 225 mm  of diameter and 200 mm of height. Flat slabs were made in to 2 variations of concrete strength, e.i. 30 MPa and 60 MPa, 2 variations of shear reinforcement, e.i. without shear reinforcement and with shear reinforcement and 2 variations of eccentricity that, e.i. without eccentricity and with eccentricity. Each treatment has 1 specimen. Each specimen has 6 cylinder specimens. Cylinder specimens used as a concrete strength control for main specimen (flat slab). The tests showed that the concrete strength had a strong influence on punching shear strength. This is shown by capacity increase of 42.78%; 54.00%; 46.59% and 0.02%. The value is ratio between the maximum load of the specimens with 60 MPa and 30 MPa at the same eccentricity and the same shear reinforcement. The eccentricity of column reduce the capacity of punching shear. This is shown by 3 specimens decrease in capacity of 3.70%; 36.75% and 7.30%. Only 1 specimen that increase in capacity of 9.27%. The value is ratio between the maximum load of the specimens with 40 mm eccentricity and 0 mm eccentricity at the same compressive strenght and the same shear reinforcement. The use of shear reinforcement does not always increase the punching shear capacity. There are 2 observations that increased capacity (52.07% and 65.37% at the centric load) and 2 observations decreased capacity (0.12% and 4.92% at the eccentric load). The value is ratio between the maximum load on the specimens using shear reinforcement with the specimens that do not use shear reinforcement at the same compressive strenght and the same eccentricity.The use of shear reinforcement increase punching shear capacity of flat slab at the centric load condition. The use of shear reinforcement decrease punching shear capacity of flat slab at the eccentric load condition.


Geosphere ◽  
2021 ◽  
Author(s):  
Xiaowen Liu ◽  
Claire A. Currie ◽  
Lara S. Wagner

Most flat-slab subduction regions are marked by an absence of arc volcanism, which is consistent with closure of the hot mantle wedge as the subducting plate flattens below the continent. Farther inland, low surface heat flow is observed, which is generally attributed to cooling of the continent by the underlying flat slab. However, modern flat slabs have only been in place for <20 Ma, and it is unclear whether there has been sufficient time for cooling to occur. We use numerical models to assess temporal variations in continental thermal structure during flat-slab subduction. Our models show that the flat slab leads to continental cooling on timescales of tens of millions of years. Cool slab temperatures must diffuse through the continental lithosphere, resulting in a delay between slab emplacement and surface cooling. Therefore, the timescales primarily depend on the flat-slab depth with shallower slabs resulting in shorter timescales. The magnitude of cooling increases for a shallow or long-lived flat slab, old subducting plate, and fast convergence rates. For regions with flat slabs at 45–70 km depth (e.g., Mexico and Peru), shallow continental cooling initiates 5–10 Ma after slab emplacement, and low surface heat flow in these regions is largely explained by the presence of the flat slab. However, for the Pampean region in Chile, with an ~100-km-deep slab, our models predict that conductive cooling has not yet affected the surface heat flow. The low heat flow observed requires additional processes such as advective cooling from the infiltration of fluids released through dehydration of the flat slab.


Sign in / Sign up

Export Citation Format

Share Document