Biological Synthesis of Nanosilver by Using Plants

2015 ◽  
Vol 1109 ◽  
pp. 30-34 ◽  
Author(s):  
M.K. Nahar ◽  
Zarina Zakaria ◽  
U. Hashim ◽  
Md Fazlul Bari

Nanotechnology is a most promising area that is increasing day by day and play a vital role in environments, biotechnological and biomedical fields. In recent years, the development of effective green chemistry methods for synthesis of various metal nanoparticles has become a main focus of researchers. They have investigated to find out a sustainable technique for production of well-characterized nanoparticles. A variety of chemical and physical methods have been exploited in the synthesis of silver nanoparticles (AgNPs) and these procedures remain expensive, high energy consumption and involve the use of hazardous chemicals. Therefore, there is an essential need to develop environmentally benign and sustainable procedures for synthesis of metallic nanoparticles. Increasing awareness of green chemistry and biological processes has need to develop a rapid, simple, cost-effective and eco-friendly methods. One of the most considered methods is production of nanosilver using plants and plant-derived materials which is the best candidates and suitable for large-scale biosynthesis of silver nanoparticles. Eco-friendly bio-organisms in plant extracts contain proteins, which act as both capping and reducing agents forming of stable and shape-controlled AgNPs. This review describes the recent advancements in the green synthesis of silver nanoparticles by using plants.

2021 ◽  
Author(s):  
Sunil T. Galatage ◽  
Aditya S. Hebalkar ◽  
Shradhey V. Dhobale ◽  
Omkar R. Mali ◽  
Pranav S. Kumbhar ◽  
...  

Nanotechnology is an expanding area of research where we use to deal with the materials in Nano-dimension. The conventional procedures for synthesizing metal nanoparticles need to sophisticated and costly instruments or high-priced chemicals. Moreover, the techniques may not be environmentally safe. Therefore “green” technologies for synthesis of nanoparticles are always preferred which is simple, convenient, eco-friendly and cost effective. Green synthesis of nanoparticle is a novel way to synthesis nanoparticles by using biological sources. It is gaining attention due to its cost effective, ecofriendly and large scale production possibilities. Silver nanoparticles (AgNPs) are one of the most vital and fascinating nanomaterials among several metallic nanoparticles that are involved in biomedical applications. It has vital importance in nanoscience and naomedicines to treat and prevent vital disease in human beings especially in cancer treatment. In current work we discussed different methods for synthesis of AgNPs like biological, chemical and physical along with its characterization. We have also discussed vital importance of AgNPs to cure life threatnign diseases like cancer along with antidiabetic, antifungal, antiviral and antimicrobial alog with its molecular mode of action etc. Finally we conclude by discussing future prospects and possible applications of silver nano particles.


2021 ◽  
Vol 09 ◽  
Author(s):  
Sarvat Zafar ◽  
Aiman Zafar ◽  
Fakhra Jabeen ◽  
Miad Ali Siddiq

: Nanotechnology studies the various phenomena of physio-chemical procedures and biological properties for the generation of nanosized particles, and their rising challenges in the various sectors, like medicine, engineering, agriculture, electronic, and environmental studies. The nanosized particles exhibit good anti-microbial, anti-inflammatory, cytotoxic, drug delivery, anti-parasitic, anti-coagulant and catalytic properties because of their unique dimensions with large surface area, chemical stability and higher binding density for the accumulation of various bio-constituents on their surfaces. Biological approaches for the synthesis of silver nanoparticles (AgNPs) have been reviewed because it is an easy and single-step protocol and a viable substitute for the synthetic chemical-based procedures. Physical and chemical approaches for the production of AgNPs are also mentioned herein. Biological synthesis has drawn attention because it is cost-effective, faster, non-pathogenic, environment-friendly, easy to scale-up for large-scale synthesis, and having no demand for usage of high pressure, energy, temperature, or noxious chemical ingredients, and safe for human therapeutic use. Therefore, the collaboration of nanomaterials with bio-green approaches could extend the utilization of biological and cytological properties compatible with AgNPs. In this perspective, there is an immediate need to develop ecofriendly and biocompatible techniques, which strengthen efficacy against microbes and minimize toxicity for human cells. The present study introduces the biological synthesis of silver nanoparticles, and their potential biomedical applications have also been reviewed.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Gaurav Sharma ◽  
Nakuleshwar Dut Jasuja ◽  
Manoj Kumar ◽  
Mohammad Irfan Ali

The present study explores biological synthesis of silver nanoparticles (AgNPs) using the cell-free extract ofSpirulina platensis. Biosynthesised AgNPs were characterised by UV-Vis spectroscopy, SEM, TEM, and FTIR analysis and finally evaluated for antibacterial activity. Extracellular synthesis using aqueous extract ofS. platensisshowed the formation of well scattered, highly stable, spherical AgNPs with an average size of 30–50 nm. The size and morphology of the nanoparticles were confirmed by SEM and TEM analysis. FTIR and UV-Vis spectra showed that biomolecules, proteins and peptides, are mainly responsible for the formation and stabilisation of AgNPs. Furthermore, the synthesised nanoparticles exhibited high antibacterial activity against pathogenic Gram-negative, that is,Escherichia coli, MTCC-9721;Proteus vulgaris, MTCC-7299;Klebsiella pneumoniae, MTCC-9751, and Gram-positive, that is,Staphylococcus aureus, MTCC-9542;S. epidermidis, MTCC-2639;Bacillus cereus, MTCC-9017, bacteria. The AgNPs had shown maximum zone of inhibition (ZOI) that is31.3±1.11inP. vulgaris. Use of such a microalgal system provides a simple, cost-effective alternative template for the biosynthesis of nanomaterials of silver in a large scale that could be of great use in biomedical applications.


2020 ◽  
Vol 13 ◽  
Author(s):  
Kumari Jyoti ◽  
Punyasloka Pattnaik ◽  
Tej Singh

Background:: Synthesis of metallic nanoparticles has attracted extensive vitality in numerous research areas such as drug delivery, biomedicine, catalysis etc. where continuous efforts are being made by scientists and engineers to investigate new dimensions for both technological and industrial advancements. Amongst numerous metallic nanoparticles, silver nanoparticle (AgNPs) is a novel metal species with low toxicity, higher stability and significant chemical, physical and biological properties. Methods:: In this, various methods for the fabrication of AgNPs are summarized. Importantly, we concentrated on the role of reducing agents of different plants parts, various working conditions such as AgNO3 concentration; ratio of AgNO3/extract; incubation time; centrifugal conditions, size and shapes. Results:: This study suggested that eco-friendly and non toxic biomolecules present in the extracts (e.g. leaf, stem and root) of plants are used as reducing and capping agents for silver nanoparticles fabrication. This method of fabrication of silver nanoparticles using plants extracts is comparatively cost-effective and simple. A silver salt is simply reduced by biomolecules present in the extracts of these plants. In this review, we have emphasized the synthesis and antibacterial potential of silver nanoparticles using various plant extracts. Conclusion:: Fabrication of silver nanoparticles using plant extracts have advantage over the other physical methods, as it is safe, eco-friendly and simple to use. Plants have huge potential for the fabrication of silver nanoparticles of wide potential of applications with desired shape and size.


2012 ◽  
Vol 585 ◽  
pp. 144-148
Author(s):  
Poushpi Dwivedi ◽  
S.S. Narvi ◽  
R.P. Tewari

In this nanoregime attempts to bring forth nanoparticles and nanomaterials are myriads, with there interesting and demanding applications in almost every field. Today the field of nanoscience has bloomed with the confluence of nanotechnology with material science, biology, biotechnology and medicine and the need for nanotechnology will only increase as miniaturization becomes extremely important in various arrays of life. Since time immemorial silver nanoparticles have been extensively used for hygienic and healing purposes, and even until most recently, it has indispensible vital role especially in the biomedical arena. Thus in an attempt to generate silver nanoparticles employing green, environmentally benign route, we have designed to converge mythology with technology, with the mystical production of silver nanoparticles, enabled by the blueberry beads of the plant Elaeocarpus granitrus Roxb., the Rudraksha. This non-degradable bead does not disintegrate, but retains the potentiality, even after unlimited production of silver nanoparticles, assisting infinite times. The extremely cost-efficient nanoparticles thus developed in a superiorly efficient manner were characterized through different techniques; like UV/visible spectroscopy, PL spectroscopy, transmission electron microscopy, energy dispersive X-ray analysis and nanoparticle size analysis.


2018 ◽  
Vol 54 (28) ◽  
pp. 3500-3503 ◽  
Author(s):  
C. V. Manohar ◽  
Tiago Correia Mendes ◽  
Mega Kar ◽  
Dabin wang ◽  
Changlong Xiao ◽  
...  

Sodium ion batteries (SIBs) are widely considered as alternative, sustainable, and cost-effective energy storage devices for large-scale energy storage applications.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Sonal S. Birla ◽  
Swapnil C. Gaikwad ◽  
Aniket K. Gade ◽  
Mahendra K. Rai

Synthesis of silver nanoparticles (SNPs) by fungi is emerging as an important branch of nanotechnology due to its ecofriendly, safe, and cost-effective nature. In order to increase the yield of biosynthesized SNPs of desired shape and size, it is necessary to control the cultural and physical parameters during the synthesis. We report optimum synthesis of SNPs on malt extract glucose yeast extract peptone (MGYP) medium at pH 9–11, 40–60°C, and 190.7 Lux and in sun light. The salt concentrations, volume of filtrate and biomass quantity were found to be directly proportional to the yield. The optimized conditions for the stable and rapid synthesis will help in large scale synthesis of monodispersed SNPs. The main aim of the present study was to optimize different media, temperature, pH, light intensity, salt concentration, volume of filtrate, and biomass quantity for the synthesis of SNPs byFusarium oxysporum.


Author(s):  
Mohammed Saleh D. Albalawi ◽  
Zainab Ali H. Alamer ◽  
Fatimah Sameer H. Alkhars ◽  
Bayan Salman A. Alshuhayb ◽  
Alzahraa Jawad A. Alqasim ◽  
...  

Self-monitoring of blood glucose (SMBG) is a valuable technique for diabetes mellitus treatment. Patients with diabetes frequently monitor their blood glucose levels in order to identify hypoglycemia and modify their insulin dosage as necessary. In many large-scale outcome studies, self-monitoring of blood glucose (SMBG) in the management of diabetes plays a vital role, contributing significantly to the outcomes. It is recommended that the patient keep track of their SMBG readings in a log book. For interpreting the SMBG findings, information regarding food intake, medication, and activity may be useful. An explanation of the practical components of the process is required to assess a patient's grasp of SMBG knowledge. For SMBG lancing treatments to be effective, the patient must have a thorough understanding of the stages involved. With many studies suggesting the benefits of SMBG other studies say that SMBG has little clinical effectiveness in improving glycemic control in patients with T2DM who are taking oral medications or eating a low-carbohydrate diet alone, and is thus unlikely to be cost-effective. However, if patients have the ability to modify their treatment dosage then it can be much more effective. In this review we will be looking at the SMBG techniques, outcomes and the relationship with glucose management.


Shore & Beach ◽  
2020 ◽  
pp. 38-48
Author(s):  
Syed Khalil ◽  
Gregory Grandy ◽  
Richard Raynie

Louisiana has a long history of coastal management and restoration actions with multiple projects implementing common approaches. Traditionally, most of the restoration efforts have been ongoing in Louisiana by state and federal agencies through the Coastal Wetlands Planning, Protection and Restoration Act (CWPPRA). These activities are now being expanded significantly through additional funding and implementing entities such as the Resources and Ecosystems Sustainability, Tourist Opportunities, and Revived Economies of the Gulf Coast States (RESTORE) Act of 2012 Council, National Resource and Damage Assessment (NRDA) through the Louisiana Trustee Implementation Group (LA TIG), and the National Fish and Wildlife Foundation (NFWF). Considering a broader ecosystem or landscape context for implemented restoration projects can provide a framework for emphasizing commonality of restoration goals. Such a framework allows for multiple benefits of restoration efforts to be quantified, including prioritized natural resources, ultimately assessing the effectiveness of large-scale restoration efforts in coastal Louisiana. Three disasters have completely changed the trajectory of Louisiana’s coastal resto- ration and protection program. Hurricanes Katrina and Rita (2005) compelled the state to take serious note of the vagaries of nature, especially high-energy events like hurricanes, and to develop a comprehensive/robust coastal protection and restoration plan. Five years later, the Deepwater Horizon (DWH) oil spill exposed the fragility of the Louisiana coast but at the same time penalty monies provided much needed funding to implement the state’s coastal protection and restoration plans. This paper provides a high-level assessment of project implementation and makes the case that Louisiana could move quickly in the implementation of various restoration plans because robust and comprehensive restoration plans were previously developed and are available. Here, it must be appreciated that for the first time, dedicated funding is available not only for regional programmatic monitoring to implement adaptive management, but also for development of the art and science of restoration. It is also suggested that for efficient and cost effective implementation of Louisiana’s Coastal Master Plan federal agencies must work in tandem with the state/CPRA who not only bring the most comprehensive plan but expertise along with institutional knowledge to the table.


2011 ◽  
Vol 64 (3) ◽  
pp. 279 ◽  
Author(s):  
Vipul Bansal ◽  
Rajesh Ramanathan ◽  
Suresh K. Bhargava

A promising avenue of research in materials science is to follow the strategies used by nature to fabricate ornate hierarchical materials. For many ages, organisms have been engaged in on-the-job testing to craft structural and functional materials and have evolved extensively to possibly create the best-known materials. Some of the strategies used by nature may well have practical implications in the world of nanomaterials. Therefore, the efforts to exploit nature’s ingenious work in designing strategies for nanomaterials synthesis has led to biological routes for materials synthesis. This review outlines the biological synthesis of a range of oxide nanomaterials that has hitherto been achieved using fungal biosynthesis routes. A critical overview of the current status and future scope of this field that could potentially lead to the microorganism-mediated commercial, large-scale, environmentally benign, and economically-viable ‘green’ syntheses of oxide nanomaterials is also discussed.


Sign in / Sign up

Export Citation Format

Share Document