Numerical and Experimental Investigation on Tensile Properties of Natural-Sand Reinforced Polypropylene

2015 ◽  
Vol 1115 ◽  
pp. 283-287
Author(s):  
Ahmed N. Oumer ◽  
Idris Mat Sahat ◽  
Muhammad Ammar Nik Mu'tasim ◽  
Tedi Kurniawan

Reinforced polymer composites are replacing metals in many engineering fields due to their high strength to weight ratio, low cost, and resistance to corrosion. In this study, the tensile properties of natural-sand particle reinforced polypropylene composites obtained by means of numerical method were compared with the experimental observations. Rectangular samples were prepared by heating the natural sand and polypropylene (PP) mixture at the melting temperature of PP and cooling in a rectangular mold. During cooling, pressure was applied on the upper part of the mold to avoid voids and shrinkages on the final sample. The concentration of the sand was varied as 5%, 10%, 15%, 20%, and 30% by weight. Then the samples were tested with 3-Point Bending and Universal Tensile Testing Machines to obtain the respective values of flexural and tensile properties of the composite samples. The numerical simulation was performed by using ANSYS software. For the simulation, structured mesh was constructed with 7500 elements and 36466 nodes. The experimental results indicated that the yield stress values dropped gradually from 21.62 MPa for 5% by weight to 8.01 MPa for 30% which leads to a conclusion that the higher the percentage of the sand particle reinforcement, the lower the tensile strength of the composite would be. Moreover, both the numerical and experimental results showed a linear increase in deflection with the increments of the applied load. These results are as expected and they confirm with the theoretical behavior of a bar subjected to axial loading. Hence, this study could assist in decisions regarding the design of reinforced composite products.

Alloy Digest ◽  
2012 ◽  
Vol 61 (5) ◽  

Abstract Tungum alloy combines an unusually high strength-to-weight ratio, with ductility, excellent corrosion resistance, and good fatigue properties. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming. Filing Code: Cu-806. Producer or source: Tungum Ltd.


Alloy Digest ◽  
1954 ◽  
Vol 3 (8) ◽  

Abstract Donegal DC-50 is a precipitation hardening stainless steel having high strength-weight ratio. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as casting, heat treating, machining, joining, and surface treatment. Filing Code: SS-17. Producer or source: Donegal Manufacturing Corporation.


2020 ◽  
Vol 15 (4) ◽  
Author(s):  
Mahesh Mallampati ◽  
Sreekanth Mandalapu ◽  
Govidarajulu C

The composite materials are replacing the traditional materials because oftheir superior properties such as high tensile strength, low thermal expansion, high strength to weight ratio, low cost, lightweight, high specific modulus, renewability and biodegradability which are the most basic & common attractive features of composites that make them useful for industrial applications. The developments of new materials are on the anvil and are growing day by day. The efforts to produce economically attractive composite components have resulted in several innovative manufacturing techniques currently being used in the composites industry. Generally, composites consist of mainly two phases i.e., matrix and fiber. In this study, woven roving mats (E-glass fiber orientation (-45°/45°,0°/90°, - 45°/45°),UD450GSM)were cut in measured dimensions and a mixture of Epoxy Resin (EPOFINE-556, Density-1.15gm/cm3), Hardener (FINE HARDTM 951, Density- 0.94 gm/cm3) and Acetone [(CH3)2CO, M= 38.08 g/mol] was used to manufacture the glass fiber reinforced epoxy composite by hand lay-up method. Mechanical properties such as tensile strength, SEM analysis, hardness test, density tests are evaluated.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1459 ◽  
Author(s):  
Xinzhe Min ◽  
Jiwen Zhang ◽  
Chao Wang ◽  
Shoutan Song ◽  
Dong Yang

An externally bonded fiber reinforced polymer (FRP) plate (or sheet) is now widely used in strengthening bending members due to its outstanding properties, such as a high strength to weight ratio, easy operating, corrosion and fatigue resistance. However, the concrete member strengthened by this technology may have a problem with the adhesion between FRP and concrete. This kind of debonding failure can be broadly classified into two modes: (a) plate end debonding at or near the plate end, and (b) intermediate crack-induced debonding (intermediate crack-induced (IC) debonding) near the loading point. The IC debonding, unlike the plate end debonding, still needs a large amount of investigation work, especially for the interface under fatigue load. In this paper, ten single shear pull-out tests were carried out under a static or fatigue load. Different load ranges and load levels were considered, and the debonding growth process was carefully recorded. The experimental results indicate that the load range is one of the main parameters, which determines the debonding growth rate. Moreover, the load level can also play an important role when loaded with the same load range. Finally, a new prediction model of the fatigue debonding growth rate was proposed, and has an excellent agreement with the experimental results.


2019 ◽  
Vol 11 (3) ◽  
pp. 147-156
Author(s):  
Prabhat SINGH ◽  
Bhagel SINGH

This paper presents an experimental study on the development of biocomposite material by using sawdust (SD) and rice husk (RH). The use of composite in the present production has increased dramatically since the 1970’s. Traditional material like aluminum, steel, iron and copper etc. may be easily replaced by using this classical biocomposites. The tensile test, hardness and tear resistance test were conducted in a Universal testing machine as per ASTM D638, ASTM D2240 and ASTM D1004 standard, respectively. Although commercial industries have increasingly been concerned with the low cost, light weight and eco-friendly material, the biocomposite material has also a great potential for reduced production cost and low maintenance which have proven to be a main factor in a push towards recycled biocomposites. In this paper we have fabricated a biocomposite model from materials like sawdust, rice husk. The main reason to use biocomposites is that they are more economical and have high strength to weight ratio compared to glass fibers. Hence fabricated material can be used for various applications.


Author(s):  
P. V. Rajesh ◽  
M. Sriram Prasanth ◽  
V. Sam Daniel ◽  
C. M. Saravanan

Aluminium Matrix Composites are extensively used due to their desirable properties like low weight, low cost, high strength to weight ratio, good corrosion resistance, good thermal conductivity and high stiffness. Their applications are diversified in production, thermal, marine and automobile industries. Aluminium is extensively used in ships, aircrafts, cars, electrical wires and household utensils because it is abundant in nature. In the present study, Aluminium alloy Al6061 Hybrid Composites reinforced with Boron carbide and Coconut shell ash are fabricated to replace the individual Aluminium alloy Al6061. For that various tests to determine properties such as strength, hardness, wear and corrosion resistance are conducted on composite samples which make them fit to be used in aircraft window frames by reviewing various literatures. In addition to above, machinability analysis is performed on all the specimens and their surface roughness is measured. Based on the results obtained, we can come to a conclusion that the aluminium composite has superior properties than individual Al6061 alloy.


Alloy Digest ◽  
1983 ◽  
Vol 32 (7) ◽  

Abstract CABOT Ti-3A1-2.5V alloy is both lightweight and strong. It has a high strength-to-weight ratio which provides a major design advantage saving weight. It can be formed readily and it has good weldability. Seamless tubing of CABOT Ti-3A1-2.5V was developed for aircraft hydraulic and fuel systems and its performance has been proved by use in various types of aircraft and aerospace vehicles. CABOT Ti-3A1-2.5V is available as plate, sheet and seamless tubing and pipe. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on forming, heat treating, machining, and joining. Filing Code: Ti-85. Producer or source: Cabot Wrought Products.


2019 ◽  
Vol 1 (6) ◽  
pp. 503-508
Author(s):  
Tharunkumar N ◽  
Anand G

The present investigation addresses the external strengthening of reinforced concrete (RC) T-beams using jute fiber laminates. An experimental study is mainly carried out to study the change in structural behaviour of RC T-beams using externally wrapped jute fiber laminates, to enhance the shear and flexural capacity of the beams. The effect of pattern and orientation of the strengthening fabric on the shear capacity of the strengthened beams will be examined. RC T-beams with minimum shear reinforcement is designed and then external confinement using jute fiber laminates is carried out using epoxy resin. The layer confinement is executed to study and analyze the behaviour of confined beams with respect to control beam. Experimental results showing the advantage of beam strengthened using the various lay-ups of jute fiber are to be discussed. For all developed composites, experimental results revealed that the tensile properties of the developed composites are strongly dependent on the tensile strength of jute fiber and that the tensile properties of jute fiber are very much defect sensitive. Jute as a natural fiber is eco-friendly, low cost, versatile in textile fields and has moderate mechanical properties, which replaced several synthetic fibers in development of many composite materials. However, the hydrophilic nature of the jute fiber affects the mechanical properties of the developed composites. As a result to arrest crack and improve the strength of beam.


2012 ◽  
Vol 217-219 ◽  
pp. 1225-1229 ◽  
Author(s):  
Huseyin Selcuk Halkaci ◽  
Mevlut Turkoz ◽  
Osman Yiğit

Aluminum alloys have good properties such as high strength-to-weight ratio, corrosion resistance and relatively low cost. Nowadays they are primarily used as wrought and cast in many industries such as automotive, aviation and aerospace because of these properties. Aluminum alloys are classified into two categories as non-heat-treatable and heat-treatable. The mechanical properties of the heat-treatable alloys are improved by solution heat treatment and controlled ageing. While mechanical properties of some heat-treatable alloys, especially 2XXX series, become stable with natural ageing at room temperature within a few days, some of them are unstable and exhibit significant changes in properties even after many years. Heat treatment process of AA 2024 is very sensible and critical and therefore should be carefully performed. In this research, effects of the solution temperature, soaking time, heating rate and quenching delay condition of AA 2024 on the mechanical properties were investigated.


2017 ◽  
Vol 24 (4) ◽  
pp. 501-520 ◽  
Author(s):  
Sampathkumar Dhanalakshmi ◽  
Punyamoorthy Ramadevi ◽  
Bennehalli Basavaraju

AbstractAreca fibers have a great prospect in the polymer composite field since they possess superior properties like being light weight, strong and having high strength-to-weight ratio. In addition, areca fibers are biodegradable, non-toxic and eco-friendly and have low maintenance cost. In this research work, areca fibers were subjected to chemical treatments such as NaOH, KMnO4, C6H5COCl and H2C=CHCOOH to reduce the hydrophilic nature of areca fibers and to improve interfacial adhesion between areca fibers and thermoplastic polypropylene matrix, so that areca-polypropylene composites with improved properties can be obtained. The untreated and all chemically treated areca-polypropylene composites with 30%, 40%, 50%, 60% and 70% fiber loadings were fabricated by the compression molding technique. Investigations of tensile, flexural and impact properties of areca fiber reinforced polypropylene composites were done under given fiber loadings by following American Standard for Testing Materials (ASTM) standard procedures. Amongst all untreated and chemically treated areca-polypropylene composites, acrylated areca-polypropylene composites with 60% fiber loading showed higher tensile and flexural strength values and with 50% fiber loading showed higher impact strength values. Hence, chemically treated areca-polypropylene composites can be considered as a very promising material for the fabrication of lightweight material industries.


Sign in / Sign up

Export Citation Format

Share Document