Effects of Cutting Fluid with Nano Particles on the Grinding of Titanium Alloys

2010 ◽  
Vol 126-128 ◽  
pp. 353-358 ◽  
Author(s):  
Yunn Shiuan Liao ◽  
Y.P. Yu ◽  
C.H. Chang

The use of cutting fluid containing nano particles in wet grinding and MQL grinding of Ti-6A1-4V is studied. For comparison purpose, experiments by applying the general purpose water-based cutting fluid are also conducted. The loading of the grinding wheel and morphology of the ground surface are observed, and the grinding forces and roughness of the ground surface are measured for analysis. It is found that the use of cutting fluid containing nano particles results in less loading of the wheel and better ground surface as compared with those with the use of the general purpose water-based cutting fluid because of smaller grinding forces and coefficient of friction originated from “lotus effect” of nano particles. MQL leads to better results than wet grinding. This is attributed to the possibility of more nano particles to effectively reach the grinding zone by the assistance of the high pressure air of MQL, which in turns enhances the functions of nano particles in alleviating wheel loading and decreasing coefficient of friction. Based on the experimental results, it is concluded that the use of cutting fluid containing nano particles has positive effects on grinding. Especially the MQL, not only can it achieve the best performance, it is also cost effective and environmentally attractive.

Author(s):  
Nagaraj Shanbhog ◽  
Arunachalam N ◽  
Srinivasa Rao Bakshi

Abstract The grindability of graphene nanoplatelets (GNP) reinforced ZrB2 was studied using resin bonded diamond grinding wheel under dry and wet conditions. A comparative study of grinding forces was performed at selected wheel surface speeds and depth of cuts for surface grinding. ZrB2-GNP showed lower normal grinding forces due to the reduced hardness. The presence of GNP reinforcement in ZrB2 resulted in lower tangential forces and reduced specific grinding energy due to the role of GNP as solid lubricant. The measured forces showed good correlation with the micro cutting model for ZrB2 and ZrB2-GNP under dry condition. The tangential forces showed same trend as normal forces at different depth of cuts and wheel surface speeds for both ZrB2 and ZrB2-GNP with average force ratios of 0.3 and 0.35 respectively. The presence of porosity in ZrB2 increased the normal grinding forces during wet grinding. Scanning Electron Microscope (SEM) images of the grinding chips indicated a mixture of both the ductile mode and the brittle mode of material removal with predominantly brittle fractured chips. Energy Dispersive Spectroscopy (EDS) confirmed the presence of GNPs in ZrB2-GNP grinding chips. The topography of the grinding wheel showed higher wheel loading after the dry grinding than that of wet grinding. The wet grinding resulted in relatively lower surface roughness (Ra values) compared to that of dry grinding.


2009 ◽  
Vol 76-78 ◽  
pp. 21-26 ◽  
Author(s):  
Taghi Tawakoli ◽  
Engelbert Westkämper ◽  
Bahman Azarhoushang

The total removal of grinding wheel material includes two main parts. The larger of the two is the result of dressing and truing operation and the other relatively small part is due to the wheel wear which takes place during the actual grinding process. The frequency of dressing and truing operations depends on the cutting conditions, wheel characteristic, etc. However in dry grinding as there is no cutting fluid to transfer the heat from the contact zone, the wheel wear during grinding and the frequency of dressing is much higher due to the higher grinding forces and temperatures. Vibration grinding reduces wear of the grinding wheel during the process considerably and decreases the frequency of dressing operation significantly. Hence it increases the efficiency of the process and reduces the cost. The investigation carried out in the KSF institute shows the improvement on the surface roughness, reduction of the grinding forces, thermal damage of the ground surface and radial wear of the grinding wheel in case of using vibration grinding comparing to conventional grinding. The designed and developed ultrasonically vibrated workpiece holder and the experimental investigation show a decrease of up to 80% of radial wear of the grinding wheel.


2016 ◽  
Vol 686 ◽  
pp. 125-130 ◽  
Author(s):  
Miroslav Neslušan ◽  
Jitka Baďurová ◽  
Anna Mičietová ◽  
Maria Čiliková

This paper deals with cutting ability of progressive Norton Quantum grinding wheel during grinding roll bearing steel 100Cr6 of hardness 61 HRC. Cutting ability of this wheel is compared with conventional grinding wheel and based on measurement of grinding forces as well as surface roughness. Results of experiments show that Norton Quantum grinding wheels are capable of long term grinding cycles at high removal rates without unacceptable occurrence of grinding chatter and surface burn whereas application of conventional wheel can produce excessive vibration and remarkable temper colouring of ground surface. Moreover, while Norton Quantum grinding wheel gives nearly constant grinding forces and surface roughness within ground length at higher removal rates, conventional grinding wheel (as that reported in this study) does not.


2020 ◽  
pp. 70-74
Author(s):  
V.V. Guliyev ◽  
◽  
◽  

Currently, a great number of drilling fluids with different additives are used all over the world. Such additives are applied to control the properties of the drilling mud. The main purpose for controlling is to achieve more effective and safe drilling process. This research work aims to develop Water-Based Mud (WBM) with a Coefficient of Friction (CoF) as low as Oil-Based Mud (OBM) and better rheological properties. As it is known, produced CoF by WBM is higher than OBM, which means high friction between wellbore or casing and drill string. It was the reason for studying the effect of nanosilica on drilling fluid properties such as lubricity, rheological parameters and filtrate loss volume of drilling mud. The procedures were carried out following API RP 13B and API 13I standards. Five concentrations of nanosilica were selected to be tested. According to the results obtained, it was defined that adding nanosilica into the mud decreases CoF of basic WBM by 26 % and justifies nanosilica as a good lubricating agent for drilling fluid. The decreasing trend in coefficient of friction and plastic viscosity for nanosilica was obtained until the concentration of 0.1 %. This reduction is due to the shear thinning or pseudoplastic fluid behavior. After 0.1 %, an increase at PV value trend indicates that it does not follow shear thinning behavior and after reaching a certain amount of dissolved solids in the mud, it acts like normal drilling fluid. The yield point of the mud containing nanoparticles was higher than the basic one. Moreover, a growth in the concentration leads to an increase in yield point value. The improvement of this fluid system cleaning capacity via hydraulics modification and wellhole stability by filter cake endurance increase by adding nanosilica is shown as well. The average well construction data of “Neft Dashlary” field was used for the simulation studies conducted for the investigation of hydraulics parameters of reviewed fluids for all series of experiments. The test results were accepted reliable in case of at least 3 times repeatability.


Author(s):  
Aswani K Singh ◽  
Varun Sharma

During machining, the cutting fluids play an essential role in cooling and lubrication. In order to reduce the friction forces, the excessive amount of the cutting fluids are generally used. This, in turn, leads to wastage of the cutting fluids which results in a serious impact on the environment, health and cost of production. Therefore, the judicious use of lubricants is the foremost concern in the manufacturing industry. In order to mitigate these drawbacks, various alternatives have been developed in the last decade. In the present paper, ionic liquids have been proved as favourable sustainable alternative additives in the base oil. The effect of alkyl chain length of ionic liquids with base oil on the thermo-physical and tribological characteristics of cutting fluids including viscosity, wettability, anticorrosion behaviour, thermal stability, and coefficient of friction have been analysed. In the present study, pyrrolidinium and hexafluoro-phosphate (PF6) have been used as cation and anion, respectively, with rice bran oil as base oil. The five different ionic liquids have been dispersed in base oil by 1.0 wt%. It has been found that longer alkyl chain length showed the favourable results as compared to the shorter one. Results indicated that ionic liquid based cutting fluid attained ample enhanced thermophysical and tribological properties as compared to the neat rice bran oil. There has been 5.08% and 4.29% improvement in viscosity and thermal conductivity for IL4 + RBO in comparison to neat RBO. In addition, the wettability, coefficient of friction, and wear volume have been reduced by 20.34%, 53.79% and 57.87% correspondingly.


2018 ◽  
Vol 198 ◽  
pp. 02004
Author(s):  
Junping Zhang ◽  
Weidong Wang ◽  
Songhua Li ◽  
Han Tao

The impacts of different linear speed of grinding wheel, grinding depth and workpiece feed speed with or without grinding fluid on grinding force were studied by plane grinding machining of zirconia ceramics. The impacts of different machining environment and grinding parameter on normal and tangential grinding forceswere studied by testing the grinding force during grinding with a force measuring device. The studies showed that the normal and tangential grinding forces decrease with the increase of the linear speed of grinding wheel and increase with the improvement of grinding depth and workpiece feed speed. The grinding depth has the greatest impacts on the normal and tangential grinding forces in dry grinding environment; while in wet grinding environment, the grinding depth exerts the greatest impacts on the normal grinding force and the linear speed of grinding wheel imposes the greatest impacts on the tangential grinding force. In addition, it was found that the normal grinding force in dry grinding is minor than that in wet grinding, that the tangential grinding force in dry grinding is greater than that in wet grinding, and that the grinding force ratio in dry grinding is lower than that in wet grinding.


2011 ◽  
Vol 487 ◽  
pp. 135-139 ◽  
Author(s):  
Li Zhou ◽  
Shu Tao Huang ◽  
Xiao Lin Yu

This paper deals with the grinding performances of SiCp/Al composites with higher volume fraction and larger SiC particle. The effects of the grinding parameters on the grinding force, removal mechanisms of SiC particles have been investigated. The grinding tests were carried out by using diamond wheel on surface grinding machine. The results indicate that the feed speed of worktable has more significant effect on the grinding forces than that of grinding depth. The scanning electron microscopic images of the machined surfaces indicate that the material removal of SiC particles was primarily due to the failure of the interface between the reinforcement and matrix, and resulting from microcracks along the interface and many fracture or crushed SiC particles on the ground surface.


2006 ◽  
Vol 3 (4) ◽  
pp. 191-198 ◽  
Author(s):  
Nicolas J Vos ◽  
Dirk J Riemersma

AbstractSlippery surfaces are a continuous concern in equine veterinary practice during both treatment and orthopaedic work-ups, especially when horses have to trot on circles. Sliding of the equine foot on the ground with the potential of injury is prevented if the horizontally acting accelerating or decelerating forces on the foot do not exceed maximal friction. Friction can be calculated and therefore anticipated if the coefficient of friction (μ) between the foot of the horse and the particular ground surface is known. Friction between shod and unshod cadaver equine hooves and different ground surfaces (concrete, tarmac and rubber) was determined by pulling the hooves horizontally in a uniform motion. Horizontal forces (Fh) were measured on a force plate and with a portable digital electronic force meter. The coefficient of friction (μ) was calculated as the quotient between Fh and the gravity force (N) of the object, hence: μ = Fh /N. This study has shown that the coefficient of friction between equine hooves and a specific ground surface can be determined using a portable digital force meter or a force plate. Friction significantly depended not only on the type of surface but also on shoeing of the equine foot. Bare feet showed more friction with the hard surfaces (bricks and tarmac), the shod feet showing more friction with the rubber surfaces. Coefficients of friction could be used to estimate the possibility of injuries occurring in the equine industry during exercise and/or lameness or pre-purchase examinations.


Sign in / Sign up

Export Citation Format

Share Document