Analysis on Diffusion Parameters of Rolling Mill Bearing Alloy-Interface

2010 ◽  
Vol 145 ◽  
pp. 177-180 ◽  
Author(s):  
Hai Bin Li ◽  
Qing Xue Huang ◽  
Jian Mei Wang ◽  
Qin Ma

In this paper, the diffusion quantity of different temperatures and unit time have been investigated basing on experimental results and theoretical analysis. The diffusing parameters of molten tin in the reaction process is investigated according to diffusing formula. The results within the range of 260~350°C indicates that the diffusing activation energy is increased with the time until the reaction ceases and it is decreased with the increasing of the temperature and substrate vacancy, but the average diffusing constant of tin increased with the temperature.

2011 ◽  
Vol 393-395 ◽  
pp. 1110-1113
Author(s):  
Hai Bin Li ◽  
Qing Xue Huang ◽  
Jian Mei Wang ◽  
Hai Lian Gui ◽  
Qin Ma

Based on experimental results and theoretical analysis at different temperatures and time of unit diffusion quantity,the chemical reaction rate in the reaction process between iron and molten tin, is investigated within the range of 260~350°C. The results indicate that the chemical reaction rate at different time decreases rapidly with the time at the same temperature, it take about four minutes to cease. Morever, the numerical value of the reaction rate at different time are close and decrease with the increasing of the temperature.


Author(s):  
Sabah A. Salman ◽  
Nabeel A. Bakr ◽  
Mohammed H. Mahmood

The aim of this paper is to prepare and study the (D.C.) electrical conductivity of (PVA-Ni (NO3)2) composites at different temperatures. For that purpose, PVA films with Ni (NO3)2 salt additive were prepared with different concentrations‎ 2, 4, 6, 8 and 10 wt. % and with thickness of 45μm by using casting technique. The experimental results for PVA-Ni (NO3)2) ‎films show that the (D.C.) electrical‏ ‏conductivity increased with increasing ‎the filler content and the‏ ‏temperature, and the activation energy was ‎decreased with increasing the filler content‎.


2012 ◽  
Vol 472-475 ◽  
pp. 543-546
Author(s):  
Hai Bin Li ◽  
Qing Xue Huang ◽  
Jian Mei Wang ◽  
Hai Lian Gui ◽  
Qin Ma

Based on experimental results and theoretical analysis at different temperatures and time of unit diffusion quantity,the mixing entropy in the reaction process between iron and molten tin, is investigated within the range of 260~350°C. The mixing entropy is plotted versus the dimensional time, which showed that the difference value of it at different time was an upward trend. At different temperatures, the mixing entropy of the system increased with the temperature, tin atoms diffusing into the matrix gradually becaming greater, so as to there has been a appreciable increase in the values of mixing entropy. In addition, the mixing entropy’s increase trend becomes smoothly with the temperature increasing, and the entropy change of the system is decreasing more obvious with the temperature increasing.


1996 ◽  
Vol 05 (04) ◽  
pp. 653-670 ◽  
Author(s):  
CÉLINE FIORINI ◽  
JEAN-MICHEL NUNZI ◽  
FABRICE CHARRA ◽  
IFOR D.W. SAMUEL ◽  
JOSEPH ZYSS

An original poling method using purely optical means and based on a dual-frequency interference process is presented. We show that the coherent superposition of two beams at fundamental and second-harmonic frequencies results in a polar field with an irreducible rotational spectrum containing both a vector and an octupolar component. This enables the method to be applied even to molecules without a permanent dipole such as octupolar molecules. After a theoretical analysis of the process, we describe different experiments aiming at light-induced noncentrosymmetry performed respectively on one-dimensional Disperse Red 1 and octupolar Ethyl Violet molecules. Macroscopic octupolar patterning of the induced order is demonstrated in both transient and permanent regimes. Experimental results show good agreement with theory.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1316
Author(s):  
Daniel Mahon ◽  
Gianfranco Claudio ◽  
Philip Eames

To improve the energy efficiency of an industrial process thermochemical energy storage (TCES) can be used to store excess or typically wasted thermal energy for utilisation later. Magnesium carbonate (MgCO3) has a turning temperature of 396 °C, a theoretical potential to store 1387 J/g and is low cost (~GBP 400/1000 kg). Research studies that assess MgCO3 for use as a medium temperature TCES material are lacking, and, given its theoretical potential, research to address this is required. Decomposition (charging) tests and carbonation (discharging) tests at a range of different temperatures and pressures, with selected different gases used during the decomposition tests, were conducted to gain a better understanding of the real potential of MgCO3 for medium temperature TCES. The thermal decomposition (charging) of MgCO3 has been investigated using thermal analysis techniques including simultaneous thermogravimetric analysis and differential scanning calorimetry (TGA/DSC), TGA with attached residual gas analyser (RGA) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) (up to 650 °C). TGA, DSC and RGA data have been used to quantify the thermal decomposition enthalpy from each MgCO3.xH2O thermal decomposition step and separate the enthalpy from CO2 decomposition and H2O decomposition. Thermal analysis experiments were conducted at different temperatures and pressures (up to 40 bar) in a CO2 atmosphere to investigate the carbonation (discharging) and reversibility of the decarbonation–carbonation reactions for MgCO3. Experimental results have shown that MgCO3.xH2O has a three-step thermal decomposition, with a total decomposition enthalpy of ~1050 J/g under a nitrogen atmosphere. After normalisation the decomposition enthalpy due to CO2 loss equates to 1030–1054 J/g. A CO2 atmosphere is shown to change the thermal decomposition (charging) of MgCO3.xH2O, requiring a higher final temperature of ~630 °C to complete the decarbonation. The charging input power of MgCO3.xH2O was shown to vary from 4 to 8136 W/kg with different isothermal temperatures. The carbonation (discharging) of MgO was found to be problematic at pressures up to 40 bar in a pure CO2 atmosphere. The experimental results presented show MgCO3 has some characteristics that make it a candidate for thermochemical energy storage (high energy storage potential) and other characteristics that are problematic for its use (slow discharge) under the experimental test conditions. This study provides a comprehensive foundation for future research assessing the feasibility of using MgCO3 as a medium temperature TCES material. Future research to determine conditions that improve the carbonation (discharging) process of MgO is required.


Author(s):  
Valeria Guazzotti ◽  
Annika Ebert ◽  
Anita Gruner ◽  
Frank Welle

AbstractMaterials and articles made of acrylonitrile–butadiene–styrene (ABS) intended for contact with food must comply with the requirements of the European Plastic Regulation (EU) 10/2011, which lays down the food simulants and the time/temperature conditions to be applied for migration testing. Previous studies indicated that high concentrations of ethanol at temperatures above ambient may lead to swelling of ABS polymers resulting in increased migration. In this study migration kinetic data for a set of model substances at different temperatures were obtained using both food simulants stipulated in EU regulations and real food (milk, cream and olive oil). At the same time, the extent of polymer swelling was gravimetrically characterized after contact with simulants and different foods tested at several conditions to cover the majority of foreseeable applications of ABS. The obtained results confirmed that the use of high concentrations of ethanol–water, especially at high temperatures, causes the swelling of ABS polymers and results in significantly higher migration values compared to the tested foods as well as Tenax®. None of the real foods studied cause significant swelling of ABS. The widely used simulant 95% (v/v) aqueous ethanol proves not be suitable for compliance testing of ABS under the recommended conditions of Regulation (EU) 10/2011. Swelling of the polymer results in artificially higher diffusion coefficients or lower activation energies of diffusion. Migration prediction using polymer-specific diffusion parameters should therefore be considered to avoid over-conservative risk assessment for food contact materials and articles made of ABS.


Author(s):  
Hellismar W. da Silva ◽  
Renato S. Rodovalho ◽  
Marya F. Velasco ◽  
Camila F. Silva ◽  
Luís S. R. Vale

ABSTRACT The objective of this study was to determine and model the drying kinetics of 'Cabacinha' pepper fruits at different temperatures of the drying air, as well as obtain the thermodynamic properties involved in the drying process of the product. Drying was carried out under controlled conductions of temperature (60, 70, 80, 90 and 100 °C) using three samples of 130 g of fruit, which were weighed periodically until constant mass. The experimental data were adjusted to different mathematical models often used in the representation of fruit drying. Effective diffusion coefficients, calculated from the mathematical model of liquid diffusion, were used to obtain activation energy, enthalpy, entropy and Gibbs free energy. The Midilli model showed the best fit to the experimental data of drying of 'Cabacinha' pepper fruits. The increase in drying temperature promoted an increase in water removal rate, effective diffusion coefficient and Gibbs free energy, besides a reduction in fruit drying time and in the values of entropy and enthalpy. The activation energy for the drying of pepper fruits was 36.09 kJ mol-1.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 913
Author(s):  
Jinyi Wang ◽  
Sen Yang

The development of low-cost and high-efficiency catalysts for wastewater treatment is of great significance. Herein, nanoporous Cu/Cu2O catalysts were synthesized from MnCu, MnCuNi, and MnCuAl with similar ligament size through one-step dealloying. Meanwhile, the comparisons of three catalysts in performing methyl orange degradation were investigated. One of the catalysts possessed a degradation efficiency as high as 7.67 mg·g−1·min−1. With good linear fitting by the pseudo-first-order model, the reaction rate constant was evaluated. In order to better understand the degradation process, the adsorption behavior was considered, and it was divided into three stages based on the intra-particle diffusion model. Three different temperatures were applied to explore the activation energy of the degradation. As a photocatalytic agent, the nanoporous structure of Cu/Cu2O possessed a large surface area and it also had low activation energy, which were beneficial to the excellent degradation performance.


2011 ◽  
Vol 233-235 ◽  
pp. 1998-2001 ◽  
Author(s):  
Ming Zhao ◽  
Xiao Zhong Lu ◽  
Kai Gu ◽  
Xiao Min Sun ◽  
Chang Qing Ji

The rheological behavior of PA6/montmorillonite(MMT) by reactive extrusion was investigated using cone-and-plate rheometer. The experimental results indicated that PA6/MMT exhibited shear-thinning behavior. The shear stress of both neat PA6 and PA6/MMT increased with the increase in the shear rate. The reduction of the viscous activation energy with the increase of shear stress reflected PA6/MMT can be processed over a wider temperature.


2013 ◽  
Vol 300-301 ◽  
pp. 382-388
Author(s):  
Zhan Wei Xu ◽  
Gui Lin Zheng

A novel rain gauge based on acoustic self-calibration principle is proposed in the paper. Acoustic self-calibration principle can eliminate the uncertainty of the velocity of ultrasound and achieve accurate measurement of rainfall. The rain gauge not only overcomes the influence on the rainfall measurement under intensive rainfall conditions, but also improves the precision of rain gauge. Plenty of experiments have been done to validate the design. Both theoretical analysis and experimental results show the effectiveness of the rain gauge. A full description of the rain gauge and implementation are presented.


Sign in / Sign up

Export Citation Format

Share Document