Microstructure and Mechanical Properties of Ti-6Al-Mo-Fe Alloy Prepared by Powder Metallurgy

2010 ◽  
Vol 146-147 ◽  
pp. 1671-1674 ◽  
Author(s):  
Tian Guo Wang ◽  
Qun Qin ◽  
Dong Jian Zhou

Ti-6Al-Mo-Fe alloys were prepared by blended elemental powder metallurgy process. In this paper, the mechanical properties and microstructure of Ti-6Al-Mo-Fe alloys sintered from the powders ball-milled for various periods of time were investigated by means of contrition behavior testing, X-ray diffraction, scanning electron microscopy. With an increase in ball milling time form 1h to 10h, the microstructure evolved into a fine β phase within the α matrix. For the Ti-6Al-Mo-Fe alloy, the yield strength and elongation increase as the milling time is prolonged. It was found that the bulk alloys made from the powders ball milled for 6 h exhibited relatively high elongation of 17.8% and high yield strength of 914 MPa.

2004 ◽  
Vol 820 ◽  
Author(s):  
Jaap M.J. den Toonder ◽  
Auke R. van Dijken

AbstractThe mechanical properties of the thin film materials used in RF-MEMS are crucial for the reliability and proper functioning of the devices. In this paper we study a large number of aluminum alloys as possible RF-MEMS thin film materials. The yield strength and creep properties are measured using nano-indentation. The results show that the mechanical properties of thin aluminum films can be improved substantially by alloying elements. Of the alloys studied in this paper, AlCuMgMn in particular seems quite promising as a thin film material for RF MEMS, having both high yield strength and little creep. Using X-ray diffraction and electron microscopy, the observed effects are partly explained.


2021 ◽  
Vol 1016 ◽  
pp. 1727-1732
Author(s):  
Chen Zeng Zhang ◽  
Cun Guang Chen ◽  
Tian Xing Lu ◽  
Pei Li ◽  
Fang Yang ◽  
...  

Copper Ferro Alloys (CFAs) have an excellent shielding effect in the electromagnetic field, as well as the similar good conductivity and ductility with copper, and strong magnetism and toughness as analogous to iron. Consequently, it is considered to be novel structural and functional materials with huge development potential and wide application foreground. The influence of the content, size and distribution of Fe phase in the Cu matrix on the electromagnetic shielding property of CFAs is crucial. In the present study, CFAs with various Fe content were fabricated via powder metallurgy (P/M) combining with deformation processing. The microstructure, electrical conductivity, magnetic and mechanical properties of CFAs were investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-Ray diffraction (XRD), and tensile test. The results indicated that P/M CFAs with the homogenous and fine in-situ Fe particles showed better comprehensive performance compared to those prepared by conventional casting. Based on the microstructure observation, mechanical properties were discussed.


2019 ◽  
Vol 107 (2) ◽  
pp. 207 ◽  
Author(s):  
Jaroslav Čech ◽  
Petr Haušild ◽  
Miroslav Karlík ◽  
Veronika Kadlecová ◽  
Jiří Čapek ◽  
...  

FeAl20Si20 (wt.%) powders prepared by mechanical alloying from different initial feedstock materials (Fe, Al, Si, FeAl27) were investigated in this study. Scanning electron microscopy, X-ray diffraction and nanoindentation techniques were used to analyze microstructure, phase composition and mechanical properties (hardness and Young’s modulus). Finite element model was developed to account for the decrease in measured values of mechanical properties of powder particles with increasing penetration depth caused by surrounding soft resin used for embedding powder particles. Progressive homogenization of the powders’ microstructure and an increase of hardness and Young’s modulus with milling time were observed and the time for complete homogenization was estimated.


2011 ◽  
Vol 172-174 ◽  
pp. 190-195 ◽  
Author(s):  
Giorgia T. Aleixo ◽  
Eder S.N. Lopes ◽  
Rodrigo Contieri ◽  
Alessandra Cremasco ◽  
Conrado Ramos Moreira Afonso ◽  
...  

Ti-based alloys present unique properties and hence, are employed in several industrial segments. Among Ti alloys, β type alloys form one of the most versatile classes of materials in relation to processing, microstructure and mechanical properties. It is well known that heat treatment of Ti alloys plays an important role in determining their microstructure and mechanical behavior. The aim of this work is to analyze microstructure and phases formed during cooling of β Ti-Nb-Sn alloy through different cooling rates. Initially, samples of Ti-Nb-Sn system were prepared through arc melting furnace. After, they were subjected to continuous cooling experiments to evaluate conditions for obtaining metastable phases. Microstructure analysis, differential scanning calorimetry and X-ray diffraction were performed in order to evaluate phase transformations. Depending on the cooling rate and composition, α” martensite, ω phase and β phase were obtained. Elastic modulus has been found to decrease as the amount of Sn was increased.


2021 ◽  
Vol 853 ◽  
pp. 156768 ◽  
Author(s):  
Shima Ehtemam-Haghighi ◽  
Hooyar Attar ◽  
Ilya V. Okulov ◽  
Matthew S. Dargusch ◽  
Damon Kent

2011 ◽  
Vol 704-705 ◽  
pp. 1095-1099
Author(s):  
Peng Liu ◽  
Hao Ran Geng ◽  
Zhen Qing Wang ◽  
Jian Rong Zhu ◽  
Fu Sen Pan ◽  
...  

Effects of AlN addition on the microstructure and mechanical properties of as-cast Mg-Al-Zn magnesium alloy were investigated using optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and tensile testing. Five different samples were made with different amounts of AlN(0wt%, 0.12wt%, 0.30wt%, 0.48wt%, 0. 60wt%). The results show that the phases of as-cast alloy are composed of α-Mg,β-Mg17Al12. The addition of AlN suppressed the precipitation of the β-phase. And, with the increase of AlN content, the microstructure of β-phase was changed from the reticulum to fine grains. When AlN content was up to 0.48wt% in the alloy, the β-phase became most uniform distribution. After adding 0.3wt% AlN to Al-Mg-Zn alloy, the average alloy grain size reduced from 102μm to 35μm ,the tensile strength of alloy was the highest. The average tensile strength increased from 139MPa to 169.91MPa, the hardness increased from 77.7HB to 98.4HB, but the elongation changes indistinctively. However, when more amount of AlN was added, the average alloy grain size did not reduce sequentially and increased to 50μm by adding 0.6wt% AlN and the β-phase became a little more. Keywords: Al-Mg-Zn alloy; AlN; β-Mg17Al12; Tensile strength


1990 ◽  
Vol 192 ◽  
Author(s):  
S.J. Jones ◽  
W.A. Turner ◽  
D. Pang ◽  
W. Paul

ABSTRACTResults from structural measurements on r.f. glow discharge produced a-Ge:H films have been found to be substrate dependent. The variations in the results were found to depend on both the substrate temperature, Ts, and the substrate yield strength. Differential scanning calorimetry results were particularly affected by these parameters. For films prepared at Ts = 150°C, the DSC spectra contain two exothermic peaks when the films are deposited on low yield strength substrates while only one exothermic peak is present for films deposited on high yield strength substrates. One exothermic DSC peak is seen in spectra for all films prepared at Ts = 300°C no matter what substrates were used. This DSC spectral dependence is attributed to differences in the microstructure of films deposited at the two substrate temperatures, as seen in TEM micrographs. X-ray diffraction measurements performed on films annealed to various temperatures show that all of the exothermic DSC peaks described above are associated with the crystallization process. Thus, for the films prepared at low Ts, crystallization is either a one or two step process depending on the yield strength of the substrate.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 62
Author(s):  
Pravir Kumar ◽  
Katerina Skotnicova ◽  
Ashis Mallick ◽  
Manoj Gupta ◽  
Tomas Cegan ◽  
...  

The present study investigated the effects of alloying and nano-reinforcement on the mechanical properties (microhardness, tensile strength, and compressive strength) of Mg-based alloys and composites. Pure Mg, Mg-3Sn alloy, and Mg-3Sn + 0.2 GNP alloy-nanocomposite were synthesized by powder metallurgy followed by hot extrusion. The microstructural characteristics of the bulk extruded samples were explored using X-ray diffraction, field-emission scanning electron microscopy, and optical microscopy and their mechanical properties were compared. The microhardness, tensile strength, and compressive strength of the Mg-3Sn alloy improved when compared to those of monolithic Mg sample and further improvements were displayed by Mg-3Sn + 0.2 GNP alloy-nanocomposite. No significant change in the compressive strain to failure was observed in both the alloy and the alloy-nanocomposite with respect to that of the pure Mg sample. However, an enhanced tensile strain to failure was displayed by both the alloy and the alloy-nanocomposite.


2010 ◽  
Vol 638-642 ◽  
pp. 3453-3458 ◽  
Author(s):  
Susil K. Putatunda ◽  
Abhijit Deokar ◽  
Gowtham Bingi

A new bainitic steel with a combination of exceptionally high yield strength and fracture toughness has been developed. This steel has been synthesized by austempering a medium carbon low alloy steel by a novel two-step austempering process. The influence of this two-step austempering on the microstructure and the mechanical properties of this new steel have been examined.


Sign in / Sign up

Export Citation Format

Share Document