The Research of by Blend and Flux Method SrFe12O19 Magnetic Particle Preparation and Magnetic Properties

2010 ◽  
Vol 160-162 ◽  
pp. 1513-1517
Author(s):  
Wei Guo ◽  
Hang Wu ◽  
Zhen Zhong Zheng ◽  
Qing Chang Chen ◽  
Qing Guo Chu

According to the influence of sintering time, sintering temperature, different amount of flux and different molar ratio of Fe / Sr to the magnetic properties of prepared SrFe12O19 magnetic particles, the optimum SrFe12O19 conditions were concluded. They are: sintering time: 3 hours; sintering temperature: 1073.15 k; flux NaCl amount: 15% wt of the reaction raw materials; Fe / Sr molar ratio: 11.4; the sample magnetic properties: Ms = 63.39emu / g; Mr = 33.44emu / g; Hc = 5798Oe, Mr / Ms = 1 : 1.90 ≈ 1:2. The prepared SrFe12O19 should be single crystal particles and in the shape of flake, and the particle size should be generally about 80-90nm with uniform distribution.

2011 ◽  
Vol 487 ◽  
pp. 273-277 ◽  
Author(s):  
G.B. Liao ◽  
M.M. Zhang ◽  
Y.J. Li ◽  
Z.Q. Liu ◽  
Yan Chen

This paper mainly illustrates the magnetic abrasive finishing by sintering method and research on tests of magnetic abrasive finishing, analyses the effect of the sintering temperature, ratio of magnetic and abrasive particle size, sintering time and sintering characteristics of magnetic particles on magnetic abrasive during the finishing process, so as to achieve a better process and principle for magnetic abrasive finishing.


2016 ◽  
Vol 680 ◽  
pp. 257-260
Author(s):  
Meng Yun Dong ◽  
Cheng Zhang ◽  
Jin Feng Xia ◽  
Hong Qiang Nian ◽  
Dan Yu Jiang

CaF2 nano-power was prepared by direct precipitation methods with Ca(NO3)2 and KF as raw materials. The influences of presintering temperature and sintering temperature on the particle size and distribution of CaF2 nano-power were studied by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). This study provided an experimental method for preparation of CaF2 nano-power. The results show that the best presintering temperature of CaF2 nano-power is 500°C and the best sintering temperature of CaF2 ceramic is 900°C.


2011 ◽  
Vol 295-297 ◽  
pp. 581-584
Author(s):  
Li Qiang Zhang ◽  
Ping Huo ◽  
Yong Huang ◽  
Peng Li ◽  
Rong Yang

In laboratory condition, industrial zirconia and alumina were used as raw materials, whose particle size was controlled by ultrafine treatment of mechanical milling. The effects of different firing temperatures and soaking times on mechanical properties of Al2O3-based composite ceramics liner were researched. And the microstructure of samples was studied by scanning electron microscopy (SEM). The results indicate that mechanical properties of samples kept 3 h at sintering temperature of 1600°C with adding 30 wt% zirconia are the best.


2019 ◽  
Vol 4 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Ruyi Gan ◽  
Yaping Li ◽  
Song Qi ◽  
Mi Zhu ◽  
Miao Yu

Background: As an intelligent material, Magnetorheological Elastomer (MRE) has attracted extensive attention due to their excellent magnetic-induced properties. Aim: In addition to the matrix and interface, magnetic particle is the most critical factor in the magnetic properties of MRE. Particle size does not only affect on the magnetic properties of MRE, but also affects on interface and particle distribution. Therefore, studying the influence of particle size on viscoelastic properties is of great significance for the MRE. Methods: In this paper, several kinds of MREs containing Carbonyl Iron Particles (CIPs) with different sizes were prepared and characterized. The influences of frequency, strain and magnetic field on viscoelastic properties of these MRE samples have been discussed comprehensively. Results: The result shows that the particle size has a great impact on the performance of MRE, which indicates that the MRE performance can be improved by optimizing the particle size selection. In addition, possible physical mechanisms have been proposed to explain the effect of particles on MRE performance. Conclusion: This work can provide guidance for the performance improvement of MREs.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4596
Author(s):  
Daniel Kappe ◽  
Laila Bondzio ◽  
Joris Swager ◽  
Andreas Becker ◽  
Björn Büker ◽  
...  

In this review article, we conceptually investigated the requirements of magnetic nanoparticles for their application in biosensing and related them to example systems of our thin-film portfolio. Analyzing intrinsic magnetic properties of different magnetic phases, the size range of the magnetic particles was determined, which is of potential interest for biosensor technology. Different e-beam lithography strategies are utilized to identify possible ways to realize small magnetic particles targeting this size range. Three different particle systems from 500 μm to 50 nm are produced for this purpose, aiming at tunable, vertically magnetized synthetic antiferromagnets, martensitic transformation in a single elliptical, disc-shaped Heusler Ni50Mn32.5Ga17.5 particle and nanocylinders of Co2MnSi-Heusler compound. Perspectively, new applications for these particle systems in combination with microfluidics are addressed. Using the concept of a magnetic on–off ratchet, the most suitable particle system of these three materials is validated with respect to magnetically-driven transport in a microfluidic channel. In addition, options are also discussed for improving the magnetic ratchet for larger particles.


2021 ◽  
Vol 7 (2) ◽  
pp. 24-32
Author(s):  
D. Parajuli ◽  
N. Murali ◽  
K. Samatha

Co-precipitation was used for the preparation of Co0.5-xNixZn0.5Fe2O4 (x = 0 to 0.3) nanoferrites. The inverse spinel structure of the samples was clearly shown by the structural analysis of X-ray Diffractometer (XRD) and Fourier Transform Infrared (FTIR) Spectroscopy. We have studied the effect of sintering temperature (500oC) on the lattice constant and particle size using XRD. The average lattice parameters for the non-sintered and sintered samples were 8.377 Å and 8.354 Å respectively. For the non-sintered sample, the nickel concentration decreases the lattice parameter from 8.354 Å to 8.310 Å due to its smaller ionic radii than that of cobalt. While for a sintered sample at 500oC, the lattice parameter increases for concentration x=0.3 due to the thermal effect. The particle size calculated by Transmission Electron Microscope (TEM) agrees well with that of XRD. The morphological and compositional analysis was done with the help of Scanning Electron Microscopy (SEM) and the attached Energy Dispersive X-ray (EDX) Analyzer. The increasing percentage of nickel with decreasing percentage of cobalt shows that the cobalt is substituted by Nickel. The magnetic properties were studied by Vibrational Spectrometer (VSM). The value of saturation magnetization is higher for x=0.1 but lower for x=0.2 and 0.3 due to their particle size. The hysteresis loop of the samples their superparamagnetic behavior at room temperature.


2018 ◽  
Vol 32 (27) ◽  
pp. 1850321 ◽  
Author(s):  
Xiaoguang Pan ◽  
Aimin Sun ◽  
Yingqiang Han ◽  
Wei Zhang ◽  
Xiqian Zhao

In this work, sol–gel auto-combustion technology is used to synthesize nanocrystalline Ni[Formula: see text]Cu[Formula: see text]Co[Formula: see text]Fe2O4 with high purity metal nitrate and citric acid as precursor solution. The prepared samples are sintered at different temperatures (400[Formula: see text]C, 500[Formula: see text]C, 600[Formula: see text]C, 700[Formula: see text]C, 800[Formula: see text]C, 900[Formula: see text]C, 1000[Formula: see text]C and 1100[Formula: see text]C) for 3.5 h. The structure and magnetic properties of the samples are characterized using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and vibrating sample magnetometer (VSM). The analysis of the XRD patterns confirms that all the samples have a single-phase cubic spinel structure. The particle size of the prepared samples (between 23 nm and 36 nm) is determined by the Scherrer equation. The effect of particle size is through observation of samples sintered at different temperatures. FT-IR spectroscopy shows the characteristic peak is near 588 cm[Formula: see text]. And the measurement also confirms the formation of spinel structure. The magnetic parameters of the samples are measured by VSM at room temperature with a maximum magnetic field of 1 T. Coercivity, remanent magnetization and saturation magnetization change with the changing sintering temperature. It can be clearly observed that the magnetic properties increase significantly with the temperature increasing from 600[Formula: see text]C to 700[Formula: see text]C. The dM/dH versus H curves are obtained by differentiating the hysteresis loop. The increasing peak height of dM/dH at [Formula: see text], indicates a magnetically stable state for the samples with good crystalline cubic spinel structure.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Chen Lu ◽  
Yue Wang ◽  
Xiaofan Wang ◽  
Jianfeng Zhang

As an effective and novel rapid sintering technology with the advantages of fast heating speed and short sintering time, SPS has been applied to the research and development of various materials. After sintering at 1325°C, Ti5Sn3and Sn occurred as impurities accompanying the synthesis of Ti2SnC with a raw powder mixture of Ti/Sn/C = 2/1/1 (molar ratio). But by addition of 0.2 molar Al, and further optimization of sintering parameters at 1400°C for 10 min, almost fully pure Ti2SnC was obtained with a clear layered microstructure. The reaction mechanism analysis suggests that this beneficial effect of Al could be attributed to the suppression of decomposition of Ti2SnC by formation of Ti2SnxAl1−xC solid solution at a high sintering temperature. The present study reports a novel route to synthesize Ti2SnC by PL-SPS with a self-designed graphite die, and Al was also proposed as a sintering aid to remove impurities.


2013 ◽  
Vol 821-822 ◽  
pp. 1256-1260 ◽  
Author(s):  
Fu Te Lv ◽  
Li Ge Wang ◽  
En Ze Wang

A kind of phosphate bonding agent was prepared with H3PO4 and Al(OH)3 as the main raw materials in this paper. Phosphate-metal matrix ceramic coating was prepared on the surface of Q235 steel by using the technology of ambient cure with phosphate bonding agent as main body and CuO and SiC as fillers. The influence of the addition of CuO on curing temperature was studied. Meanwhile, the influence of SiC particle size and content on the abrasion resistance of the coating was studied. The result showed that the amount of friction and wear of phosphate-metal matrix ceramic coating was 5.5mg, when the the molar ratio of P and Al was 3:1.3, SiC particle size was D50=18μm, and its particle content was 40%, 20%wt CuO was added.


Sign in / Sign up

Export Citation Format

Share Document