Analysis of Influencing Factors on Mechanical Properties and Anisotropy of Attapulgite/NR Composites

2010 ◽  
Vol 178 ◽  
pp. 41-46
Author(s):  
Xiao Long Lu ◽  
Qing Guo Tang ◽  
Jin Sheng Liang ◽  
Yan Ding ◽  
Hao Guo

Based on the dispersion characters of organic modified attapulgite (OAT) short fibers in nature rubber (NR) matrix, this paper analyzed the effects, in terms of addition amount of OAT, processing technology of rubber compound and heat treatment, on mechanical properties and anisotropy of OAT/NR composites. Results indicated that mechanical properties were better when the OAT content is 50 phr and thin-passing is 20 times, meanwhile, the longitudinal and transversal tensile strength of OAT/NR composites were 17.01 0.5 Mpa and 14.18 0.5 Mpa respectively. The anisotropy is obvious. Also the tensile and tear broken section were studied by the scanning electron microscope (SEM) and the forming mechanism of OAT/NR anisotropy composites was discussed.

2018 ◽  
Vol 18 (06) ◽  
pp. 1850035
Author(s):  
Punyapriya Mishra ◽  
Narasingh Deep ◽  
Sagarika Pradhan ◽  
Vikram G. Kamble

Carbon nanotubes (CNTs) are widely explained in fundamental blocks of nanotechnology. These CNTs exhibit much greater tensile strength than steel, even almost similar to copper, but they have higher ability to carry much higher currents, they seem to be a magical material with all these mentioned properties. In this paper, an attempt has been made to incorporate this wonder material, CNT, (with varying percentages) in polymeric matrix (Poly methyl methacrylate (PMMA)) to create a new conductive polymer composite. Various mechanical tests were carried out to evaluate its mechanical properties. The dielectric properties such as dielectric loss and dielectric constant were evaluated with the reference of temperature and frequency. The surface structures were analyzed by Scanning Electron Microscope (SEM).


2000 ◽  
Vol 9 (4) ◽  
pp. 096369350000900 ◽  
Author(s):  
C. Gonzalez ◽  
J. Llorca

The effect of processing on the mechanical properties of Sigma 1140+ SiC fibres was studied through tensile tests carried out on pristine Sigma 1140+ SiC fibres and on fibres extracted from a Ti-6A1-4V-matrix composite. The elastic modulus and the tensile strength were computed after measuring carefully the fibre diameter. The characteristic fibre strength was reduced by 20% and the Weibull modulus by half during composite processing. The analysis of the fracture surfaces in the scanning electron microscope showed that the strength-limiting defects were located around the tungsten core in pristine fibres and predominantly at the surface in fibres extracted from the composite panels. These latter defects were nucleated by the mechanical stresses generated on the fibres during the panel consolidation.


Author(s):  
B. F. Luan ◽  
L. Q. Yang ◽  
T. G. Wei ◽  
K. L. Murty ◽  
C. S. Long ◽  
...  

To investigate the effects of Mo and Bi on mechanical properties of a Zr-Fe-Cr alloy at room temperature, seven Zr-Fe-Cr-Mo-Bi alloys with different compositions were designed. They were subjected to a series of rolling processes and heat treatments, and then sampled to measure mechanical properties by hardness and tensile test and to characterize microstructures by scanning electron microscope (SEM) and electron channel contrast (ECC) technique. Results indicated that among them two types of Zr-Fe-Cr-Mo-Bi alloys achieve the designed goals on mechanical properties and have the following advantages: (i) the hardness of the alloys, up to 334HV after annealing, is 40% higher than traditional Zr-4. (ii) The yield strength (YS) and ultimate tensile strength (UTS) of the alloys are 526 MP a and 889 MP a after hot rolling and annealing, markedly higher than the traditional Zr alloy. (iii) Good plasticity of the new Zr-Fe-Cr-Mo-Bi alloy is obtained with about 40% elongation, which is greatly higher than the Zr-Fe-Cr-Mo alloy thanks to the addition of Bi offsetting the disadvantage of addition Mo. Furthermore, according to observations of the microstructure observation, the reasons of the effect of the Mo and Bi elements on the mechanical performance of Zr-Fe-Cr alloy were studied and discussed.


2016 ◽  
Vol 51 (14) ◽  
pp. 1971-1977 ◽  
Author(s):  
NH Noor Mohamed ◽  
Hitoshi Takagi ◽  
Antonio N Nakagaito

The mechanical properties of cellulose nanofiber-reinforced polyvinyl alcohol composite were studied. Neat polyvinyl alcohol films, cellulose nanofiber sheets, and their nanocomposites containing cellulose nanofiber weight ratios of 5, 15, 30, 40, 45, 50 and 80 wt% were fabricated. Heat treatment by hot pressing at 180℃ was conducted on the specimens to study its effect to the mechanical properties and the results were compared with the non heat-treated specimens. Morphology of the composites was studied by scanning electron microscopy and the mechanical properties were evaluated by means of tensile tests. The results showed that increase of cellulose nanofiber content from 5 wt% to 80 wt% has increased the tensile strength of the composites up to 180 MPa, with cellulose nanofiber content higher than 40 wt% yielding higher tensile strength. The heat-treated specimens exhibited higher tensile strength compared to those of untreated specimens.


2013 ◽  
Vol 750-752 ◽  
pp. 671-674
Author(s):  
Rong Hua Zhang ◽  
Yong An Zhang ◽  
Bao Hong Zhu

In this paper, the Al-8.5Fe-1.3V-1.7Si alloys were fabricated by spray forming and extrusion process. The microstructure and mechanical properties of the alloy were investigated by means of metallographic, scanning electron microscope and tensile test. The results indicate that the tensile strength of the extrued alloys can reach 353MPa, the yield strength 300MPa, elongation 19.12%, at room temperature. At 250°C, the tensile strength of the extrued alloys can reach 221MPa, the yield strength 208MPa, elongation 13.33%.


2014 ◽  
Vol 1048 ◽  
pp. 36-40
Author(s):  
Wei Lai Chen ◽  
Lin Yan Wan ◽  
Hong Qin

Microstructures and mechanical properties of melt spinning spandex were studied in this article.Cross section and longitudinal surface were observed and analyzed by JSM-5610LV scanning electron microscopy. Q2000 DSC differential scanning calorimeter was used to test the glass transition temperature and melting temperature which indicated glass transition temperature is about 44°C and melting temperature is about 200°C. We employed JSM-5610LV scanning electron microscopy to observe adhesion of melt spinning spandex with nylon filament after different time and temperature processing. It concluded that after 150°C90s、160°C60s、160°C90s、170°C30s heat treatment, the adhesive of melt spinning spandex with nylon is good. At the same time,tensile strength and elastic properties of melt spinning spandex which was processed under different time and temperature were tested, tensile strength and elastic recovery of melt spinning spandex after160°C 90s heat treatment is the best.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaojian Cao ◽  
Han Zhang ◽  
Jun Yu ◽  
Tianchong Yu ◽  
Yuxing Qing

Determination of the mechanical properties of rock containing pre-existing cracks under tension condition is of great significance to understand the failure process of rock in engineering. This paper presents the experimental results of sandstone containing pre-existing cracks under Brazilian compression. The characteristics of the microcracks were analyzed by a scanning electron microscope. The results show that the rock containing pre-existing cracks has an obvious anisotropic characteristic. When the crack inclination is 45°, the rock has the minimum tensile strength and the weakest axial deformation resistance.


2011 ◽  
Vol 230-232 ◽  
pp. 1231-1235 ◽  
Author(s):  
Jin Hua ◽  
Zhi Min Zhao ◽  
Wei Yu ◽  
Ben Zheng Wei

The rice husk powder was modified by polymer (lactic acid) (PLA) and Maleic anhydride (coupling agent, MAPP). Composite material was prepared in the way of melt blending. The mechanical properties, water absorbability of rice husk/polymer (lactic acid) (PLA) composites, and the relations between these properties and microscopic characteristics were investigated. The result showed that, with the increasing content of rice husk power, the maximum bearable tension and tensile strength increased; Water absorbability after 2 hours’ immersion hadn't significant change, but after 24 hours’ immersion, the water absorbing capacity had obvious addition. The study also showed that coupling agent could significantly reduce the water absorbability of composite materials; The use of scanning electron microscope (SEM) found that the interface became smoother, the adhesion between PLA and rice husk powder became closer when add the coupling agent to the rice husk powder, it also could well explain the differences between water absorbability and mechanical properties.


Author(s):  
Nga Thi-Hong Pham

Ductility and tensile strength are among the basic mechanical properties of polymers. Generally, it is difficult to enhance the ductility without significantly reducing the tensile strength. In this study, thermoplastic polyurethane (TPU) is mixed with 0%, 2.5%, 5%, 7.5%, 10%, and 12.5% polyamide 6 (PA6). The results show that the sample containing 100% TPU has the largest elongation of 690.5%. When PA6 is added, the elongation decreases gradually to 635.0%, 623.1%, 529.5%, 476.0%, 391.3%, and 242.8%, corresponding to 2.5%, 5%, 7.5%, 10%, 12.5%, and 100% PA6, respectively. The tensile strengths are 36.7, 33.8, 29.4, 26.5, 23.1, and 24.9 MPa, corresponding to 0%, 2.5%, 5%, 7.5%, 10%, and 12.5% PA6 samples, respectively. The tensile strength decreases gradually when the PA6 content is increased. Notably, the tensile strength of the 12.5% PA6 sample increases compared to the 10% PA6 sample. In addition, the hardness of the TPU/PA blend increases slightly as the PA6 ratio is increased. Finally, scanning electron microscope images demonstrate that PA6 particles act as particles dispersed or dissolved in TPU/PA blends.


2017 ◽  
Author(s):  
Zhenglong Liang ◽  
Qi Zhang

A novel process which combines casting with forging during one process was proposed to improve mechanical properties and refine microstructure. The microstructure evolution of as-cast samples and forged samples were analyzed by optical microscope and scanning electron microscope (SEM). The tensile properties and micro-hardness were also measured. The results show that combination of casting and forging can improve microstructure and decrease porosity of casting samples, consequently contributing to a better fatigue performance. The ultimate tensile strength and elongation were increased after forging process, however, the yield strength and micro-hardness decreased.


Sign in / Sign up

Export Citation Format

Share Document