Effect of Surface Roughness on Slip Resistance of Rubber

2011 ◽  
Vol 189-193 ◽  
pp. 1538-1542
Author(s):  
Li Xiao Jia ◽  
Yong Zhen Zhang ◽  
Yong Ping Niu ◽  
San Ming Du ◽  
Jian Li

In order to decrease accidents of slips and falls, COFs of rubber samples with different surface roughness were measured by Brungraber Mark II. And the correlation coefficients between roughness parameters and COF were calculated. The rusults have shown that the COF increases with surface roughness and the correlation coefficient between Sq and COF is highest. In general, almost all the roughness parameters used in the study have high correlation with COF. Parameters had the highest correlation with COF depends on the materials used and test conditions.

Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5203
Author(s):  
Jesús A. Sandoval-Robles ◽  
Ciro A. Rodríguez ◽  
Erika García-López

The interplay between a prosthetic and tissue represents an important factor for the fixation of orthopedic implants. Laser texturing tests and electropolishing were performed on two materials used in the fabrication of medical devices, i.e., CoCr and Ti6Al4V-ELI alloys. The material surface was textured with a diode-pumped solid state (DPSS) laser and its effect on the surface quality and material modification, under different combinations of laser power and marking speed, were investigated. Our results indicate that an increment of energy per unit length causes an incremental trend in surface roughness parameters. Additionally, phase transformation on the surface of both alloys was achieved. Chemical analysis by energy dispersive X-ray spectrometer (EDX) shows the formation of (Co(Cr,Mo)) phase and the M23C6 precipitate on the CoCr surface; while quantitative analysis of the X-ray diffractometer (XRD) results demonstrates the oxidation of the Ti alloy with the formation of Ti2O and Ti6O from the reduction of the α-Ti phase. The behaviors were both related with an increase of the energy per unit length. Control of the final surface roughness was achieved by an electropolishing post-treatment, minimizing the as-treated values. After polishing, a reduction of surface roughness parameters was obtained in a range between 3% and 44%, while no changes in chemical composition or present phases were observed.


2013 ◽  
Vol 594-595 ◽  
pp. 546-550 ◽  
Author(s):  
Mohd Jamir Mohd Ridzuan ◽  
Mohd Bin Sulaiman Hafis ◽  
K. Azduwin ◽  
A.R. Mohamed ◽  
S.N. Fitriah ◽  
...  

The study presented in this paper is focused on the effect of surfaces roughness of pure aluminium A1100 on the cold work extrusion process by three different angles of taper die. Different angles of taper die will affect the surface roughness of the workpiece. To protect the surface and to reduce friction, lubricants are often used in extrusion process [1]. Different lubricants may have different optimum taper die angle that are suitable to be applied. Two types of materials used in this experiment are steel SKD 11 for taper die and aluminium A1100 for workpiece and different angles applied are 30o, 45o, and 60o. Moreover, with respect to each angle, three different types of lubricants were used which are Daphne Draw S Series, Palm Olein, and EFB bio oil. The Universal Testing Machine and Surface Roughness Tester were used in this experiment. The result obtained from the experiment shows that at 30o of taper die angle were producing the smooth product surfaces for each lubricant and Daphne Draw S Series could reduce the surface roughness compared to other lubricant test.


2016 ◽  
Vol 861 ◽  
pp. 129-136 ◽  
Author(s):  
Anita Terjek

The objective of this study was to determine the affecting factors that can possibly change slipperiness of flooring. Laboratory slip resistance tests were conducted under different surface conditions. Two different methods were used to measure 6 different ceramic tiles. This article has its focus mainly on the required security and its quantification during the service life of floor coverings. Slip resistance of ceramic tiling can change with use. It is worth to investigate the effect of cleaning agents on slipperiness of floors, because it could be more dangerous when the cleaning process is in progress, so the surface is still in wet state or partly covered by liquid. This paper makes a comparative analysis on the different measurement methods and sliders that rub against the surface. In case of public and residential buildings slip resistance and surface roughness associated with cleanability, all have influence on safety in use and durability. The results showed that the perceived surface roughness parameters could be used as indicator of slipperiness and supplement objective measurement of this performance.


Author(s):  
Wen-Ruey Chang ◽  
Mikko Hirvonen ◽  
Raoul Grönqvist ◽  
William M. Aguilera

Friction is widely used as an indicator of surface slipperiness in preventing accidents in slips and falls. Surface roughness affects friction, but it is not clear which surface roughness characteristics are better correlated with friction and, therefore, are preferred as potential interventions. The transition friction between quarry tiles and Neolite under three different mixtures of glycerol and water as contaminants was correlated with the surface parameters generated from the quarry tile surfaces. The surface roughness parameters were measured with three different cut-off lengths (0.8, 2.5 and 8 mm). The results showed that transition friction decreased as the glycerol content in the contaminant was increased due to the lubrication effect. The linear correlation coefficients between the surface roughness parameters and the measured friction increased as the cut-off length was increased from 0.8 to 8 mm. However, average of the maximum height above the mean line in each cut-off length ( Rpm), arithmetical average of surface heights ( Ra), mean height from third highest peak to third lowest valley in each cut-off length ( R3z) and the kernel roughness depth ( Rk) had the strongest correlation with transition friction across three cut-off lengths used.


2021 ◽  
Vol 72 (1) ◽  
pp. 49-56
Author(s):  
Josip Miklečić ◽  
Vlatka Jirouš-Rajković

The present study investigates the relationship between the roughness of beech wood and oak wood surfaces treated with oil and polyurethane coating and the slip resistance in dry, water-wet and oily conditions. Pendulum tests were conducted for slip resistance assessment, and roughness measurements were performed by stylus instrument using Ra, Rt, Rp, Rz and Rsm parameters for surface roughness evaluation. Slip potential in dry conditions was low for all finished wood floors studied. Contamination of the surface with water and oil reduced the slip resistance of finished oak and beech flooring. The strong negative correlation was found between slip resistance on dry finished flooring and roughness parameters Ra, Rz, Rt and Rp, and positive correlation between slip resistance on water-wet finished flooring and roughness parameters Ra, Rz, Rt and Rp. Moreover, the correlations between roughness parameters Ra, Rt, Rp and Rz and slip resistance were very similar, and the roughness parameters correlated more strongly with the slip resistance on dry and water-wet surfaces than with the slip resistance on oil-wet surface. Comparison of the slip potential classifications of finished wood floors based on pendulum data and based on Rz surface roughness parameters showed that in some cases the Rz parameter appeared to overestimate the slip potential of the floors in wet conditions. The results confirm previous research that roughness measurements should only be used as a guide and should not be used as the only indicator of the slip potential of wood flooring materials.


2012 ◽  
Vol 7 (4) ◽  
pp. 155892501200700 ◽  
Author(s):  
Najeh Maâtoug ◽  
Mehdi Sahnoun ◽  
Faouzi Sakli

The present paper concerns the statistical analysis of the surface roughness evaluation of knitted fabrics by the Textile Surface Tester. The main objectives were, firstly, focused on investigating the effect of knitted fabrics structural factors and the test conditions on the surface absolute roughness, the total roughness and the standard deviation. Secondly, the relationship between sample characteristics (face, yarn count, loop length), the test conditions (the force and the slipping speed of the sensor feeler on the sample and signal sampling time), and the surface roughness parameters were analyzed and modeled through regression analysis. The combined effects of the input parameters and their two-way interactions on the test bench outputs were investigated using the analysis of variance (ANOVA). The percent contribution ratio was used to show the influence of inputs and their interactions on surface roughness parameters. The results show how much surface roughness is mainly influenced by the knits structural factors. Also, it is underlined that the applied force by the sensor feeler on the fabric has an important effect on outputs. Finally, the sensor slipping speed on the sample and the signal sampling time have no important effects on outputs. Models were developed using experimental results from a full factorial experimental design. The adjusted coefficients of determination R2adj were found to be greater than 80%.


2014 ◽  
Vol 695 ◽  
pp. 572-575
Author(s):  
Samion Syahrullail ◽  
Noorawzi Nuraliza

The aim of the present research was to investigate the possibility of contact surfaces with reduced friction using surface roughness analysis. For this purpose, various aluminum pin samples with different lubricant using different sliding speed values were prepared. To evaluate influence of roughness parameters on friction and wear, lubricated pin-on-disk tests were carried out under different speed contact conditions. Test results show that surfaces with high values surface roughness results in reduced friction. To investigate the effect of surface topography on surface roughness parameters and consequently on friction, real roughness profiles were virtually altered to achieve virtually textured surfaces.


Sign in / Sign up

Export Citation Format

Share Document