The Synthesis of Mg-Zn-Al LDH and the Sustained-Release Properties of Theophylline Intercalated LDH

2011 ◽  
Vol 189-193 ◽  
pp. 2448-2455
Author(s):  
Bao Zhong Du ◽  
Wei Luo ◽  
Ru Min Wang

Layered double hydroxides (LDHs), consist of cationic brucite-like layers and exchangeable interlayer anions. In this thesis LDHs consist of brucite-like layers of zinc hydroxide, with the exchanging propertity of interlayer anions in hydrotalcites, used Mg/Zn/Al-LDH as precursor to prepare the theophylline intercalation assembly hydrotalcites to obtain supramolecular complex for the first time by co-precipitation under a nitrogen atmosphere, determined the reaction conditions and influential factors of the synthesis of theophylline-pillared hydrotalcites, and tested its sustained-release performance in different media. The product has been characterized by powder X-ray diffraction (XRD), FT-IR spectroscopy, uv-vis spectrophotometer and thermogravimetry-Differential thermal analysis (TG-DTA) . Results demonstrated that : Through co-precipitation intercalation methods, with molar ratio of Mg/Zn/Al/ theophylline being 3:1:1:2, co-precipitation medium pH9, crystallization temperature 80 °C and crystallization time 12h can obtain the clear chemical composition and good crystallization of inorganic - organic hybrid-type drugs hydrotalcites. In addition, according to Pharmacopoeia measured the release rate of theophylline-LDH in the different media including distilled water,0.9%saline,simulated intestinal fluid (pH7.4 phosphate buffer) by UV spectrophotometry, Theophylline pillared hydrotalcite has a certain release in the media above all. And calculated the release of intercalation theophylline, lay the foundation for the further clinical application.

Author(s):  
Buyan-Ulzii Battulga ◽  
Tungalagtamir Bold ◽  
Enkhsaruul Byambajav

AbstractNi based catalysts supported on γ-Al2O3 that was unpromoted (Ni/γAl2O3) or promoted (Ni–Fe/γAl2O3, Ni–Co/γAl2O3, and Ni–Fe–Co/γAl2O3) were prepared using by the impregnation – co-precipitation method. Their catalytic performances for CO methanation were studied at 3 atm with a weight hourly space velocity (WHSV) of 3000 ml/g/h of syngas with a molar ratio of H2/CO = 3 and in the temperature range between 130 and 350 °C. All promoters could improve nickel distribution, and decreased its particle sizes. It was found that the Ni–Co/γAl2O3 catalyst showed the highest catalytic performance for CO methanation in a low temperature range (<250 °C). The temperatures for the 20% CO conversion over Ni–Co/γAl2O3, Ni–Fe/γAl2O3, Ni–Fe–Co/γAl2O3 and Ni/γAl2O3 catalysts were 205, 253, 263 and 270 °C, respectively. The improved catalyst distribution by the addition of cobalt promoter caused the formation of β type nickel species which had an appropriate interacting strength with alumina support in the Ni–Co/γAl2O3. Though an addition of iron promoter improved catalyst distribution, the methane selectivity was lowered due to acceleration of both CO methanation and WGS reaction with the Ni–Fe/γAl2O3. Moreover, it was found that there was no synergetic effect from the binary Fe–Co promotors in the Ni–Fe–Co/γAl2O3 on catalytic activity for CO methanation.


Author(s):  
Ghazanfar Abbas ◽  
Rizwan Raza ◽  
Muhammad Ashraf Chaudhry ◽  
Bin Zhu

The entire world’s challenge is to find out the renewable energy sources due to rapid depletion of fossil fuels because of their high consumption. Solid Oxide Fuel Cells (SOFCs) are believed to be the best alternative source which converts chemical energy into electricity without combustion. Nanostructured study is required to develop highly ionic conductive electrolyte for SOFCs. In this work, the calcium doped ceria (Ce0.8Ca0.2O1.9) coated with 20% molar ratio of two alkali carbonates (CDC-M: MCO3, where M = Na and K) electrolyte was prepared by co-precipitation method in this study. Ni based electrode was used to fabricate the cell by dry pressing technique. The crystal structure and surface morphology was characterized by X-Ray Diffractometer (XRD), Scanning Electron Microscopy (SEM) and High Resolution Transmission Electron Microscopy (HRTEM). The particle size was calculated in the range of 10–20nm by Scherrer’s formula and compared with SEM and TEM results. The ionic conductivity was measured by using AC Electrochemical Impedance Spectroscopy (EIS) method. The activation energy was also evaluated. The performance of the cell was measured 0.567W/cm2 at temperature 550°C with hydrogen as a fuel.


2018 ◽  
Vol 281 ◽  
pp. 40-45
Author(s):  
Jie Guang Song ◽  
Lin Chen ◽  
Cai Liang Pang ◽  
Jia Zhang ◽  
Xian Zhong Wang ◽  
...  

YAG materials has a number of unique properties, the application is very extensive. In this paper, the superfine YAG powder materials were prepared by co-precipitation method and hydrothermal precipitation method. The influence of synthesis process on the morphology of the powder was investigated. The results showed that the precursor powder prepared via the co-precipitation method is mainly from amorphous to crystalline transition with the increasing calcination temperature, the precursor agglomeration is more serious, In the process of increasing the calcination temperature, the dispersibility of the roasted powder is greatly improved, which is favorable for the growth of the crystal grains, so that the particle size of the powder is gradually increased, the YAG precursor prepared by the co-precipitation method is transformed into YAG crystals, the phase transition occurs mainly between 900 and 1100°C. When the molar ratio of salt to alkali is Y3+: OH-=1: 8 via the hydrothermal reaction, the YAG particles with homogeneous morphology can be obtained. When the molar ratio of salt and alkali is increased continuously, the morphology of YAG particles is not obviously changed. The co-precipitation method is easy to control the particle size, the hydrothermal method is easy to control the particle morphology.


Author(s):  
Karilys González Nieves ◽  
Dalice M. Piñero Cruz

The title compound, diaqua[tris(2-aminoethyl)amine]nickel(II) hexaaquanickel(II) bis(sulfate), [Ni(C6H18N4)(H2O)2][Ni(H2O)6](SO4)2 or [Ni(tren)(H2O)2][Ni(H2O)6](SO4)2, consists of two octahedral nickel complexes within the same unit cell. These metal complexes are formed from the reaction of [Ni(H2O)6](SO4) and the ligand tris(2-aminoethyl)amine (tren). The crystals of the title compound are purple, different from those of the starting complex [Ni(H2O)6](SO4), which are turquoise. The reaction was performed both in a 1:1 and 1:2 metal–ligand molar ratio, always yielding the co-precipitation of the two types of crystals. The asymmetric unit of the title compound, which crystallizes in the space group Pnma, consists of two half NiII complexes and a sulfate counter-anion. The mononuclear cationic complex [Ni(tren)(H2O)2]2+ comprises an Ni ion, the tren ligand and two water molecules, while the mononuclear complex [Ni(H2O)6]2+ consists of another Ni ion surrounded by six coordinated water molecules. The [Ni(tren)(H2O)2] and [Ni(H2O)6] subunits are connected to the SO4 2− counter-anions through hydrogen bonding, thus consolidating the crystal structure.


2013 ◽  
Vol 781-784 ◽  
pp. 239-242
Author(s):  
Lei Wang ◽  
Peng Xiao

In this paper, SiMgAl hydotalcite synthesis conditions were investigated using co-precipitation method, within a relatively stable pH environment of 8~9. Our research, analysis and discussion focused on the effects of major factors, such as material molar ratio ,silicon content and aged condition, on the structures of synthetic products. To achieve stable and accurate data, synthetic products were characterized by XRD and IR under the identical conditions. As shown in the results, it is suggested that the best Crystallization temperature is 70°C, molar ratio of Mg to Al is 3:1, and the best content of Silicon is 0.015mol/mol.


2019 ◽  
Vol 80 (7) ◽  
pp. 1249-1256 ◽  
Author(s):  
Jinghua Liu ◽  
Xiaocai Yu ◽  
Liping Wang ◽  
Meicen Guo ◽  
Wanting Zhu ◽  
...  

Abstract A CuO/ZnO photocatalyst nanocomposite was successfully prepared by co-precipitation and characterized by investigating its chemical and physical properties by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, UV-vis diffuse reflectance spectroscopy and photoluminescence spectroscopy. The average particle size of CuO/ZnO composite was found to be around 80 nm. The degradation of chlortetracycline hydrochloride pollutants in marine aquaculture wastewater using ZnO and CuO/ZnO was compared and it was found that CuO/ZnO nanocomposite is more efficient than ZnO. The effects of external factors on the photocatalytic effectiveness of nanocomposite were investigated under visible light. Also, the photocatalytic conditions for the degradation of chlortetracycline hydrochloride by the nanocomposite were optimized. Based on both ability and efficiency of degradation, and on the cost and availability, 10:2 molar ratio of Zn2+/Cu2+ and 0.7 g/L nanocomposite, was found to be optimal, in which case the average photocatalytic degradation rate of chlortetracycline hydrochloride reached 91.10%.


2015 ◽  
Vol 1094 ◽  
pp. 15-19
Author(s):  
Lin Xia Yan ◽  
Sen Lin Tian ◽  
Qiu Lin Zhang

Cu-Al catalysts were synthesized by the co-precipitation method to study hydrolysis of hydrogen cyanide. During the synthesis, the impact of Cu/Al molar ratio, pH value and calcination temperature was investigated and the best synthesis condition was found. The results indicate that the remove of hydrogen cyanide first increases and then decreases with increasing Cu/Al molar ratio, pH value and calcination temperature, which reaches the maxima and remains above 95% at 360 min when Cu/Al molar ratio is 2:1, pH value is approximately 8.0 and calcination temperature is 400°C around. The analysis of X-ray diffraction (XRD) shows that Cu content is the main influence factor at Cu/Al molar ratio below 2:1 whereas crystallinity of catalysts is the key factor at Cu/Al molar ratio above 2:1.


2017 ◽  
Vol 726 ◽  
pp. 204-209 ◽  
Author(s):  
Jing Yang ◽  
Bao Song Li ◽  
Zhi Tong ◽  
Rui Hua Mu

Pd/Ag/SiO2 sols and powder materials were prepared by adding AgNO3 and Pd (NO3)2·2H2O into a methyl-modified silica sol. Tetraethylorthosilicate and methyltriethoxysilane were used as the silica precursor for the sol-gel reaction. The obtained SiO2 sols and powder materials were characterized by sol particle size distribution, zeta potential analysis, UV-Vis spectra, Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) measurement. It was found that most of the particle sizes of the prepared Pd/Ag/SiO2 sols are about 2~10 nm with narrow size distribution. The zeta potential of Pd/Ag/SiO2 sol with Pd/Ag molar ratio of 7.5/2.5 presents the highest value. The FTIR analysis substantiates that the Si-CH3 groups exist in the silica network and the formed Pd/Ag/SiO2 sol particles possess linear structure. XRD characterization indicates that the Pd2+ and Ag+ in the Pd/Ag/SiO2 materials had be reduced to Pd0 and Ag0, respectively, after annealed in a nitrogen atmosphere at 350°C.


Author(s):  
B. SURENDRA ◽  
M. NAVEEN KUMAR ◽  
PADMINI IRIVENTI

Objective: The objective of the present study was to formulate and evaluate caffeine-loaded solid lipid nanoparticles (SLNs) in the treatment of clinical mastitis. Methods: These were prepared by homogenization technique using stearic acid, Tween 80, and chloroform as excipients. Pre-formulation studies such as UV spectrophotometry, Fourier transform infrared (FTIR), and differential scanning calorimetry (DSC) were performed for the drug. Entrapment efficiency and in vitro dissolution studies were carried out for prepared SLNs and the optimum formulation (F2) was taken for further studies such as FTIR, DSC, SEM, particle size, and zeta potential analysis. Results: Obtained results stated that prepared SLNs are roughly spherical in nature and are in nano range. These were incorporated in Carbopol gel and further evaluation studies such as pH, spreadability, viscosity, homogenicity, and in vitro drug diffusion studies were carried out. All the results stated that prepared nanogel has shown sustained release of drug. Antimicrobial study was carried out using Staphylococcus aureus and it was confirmed by the appearance of zone of inhibition. Conclusion: Nanogel that contains caffeine SLNs with 1:2 ratio drug:lipid has shown good in vitro release. Sustained release of caffeine drug till 12 h was achieved by delivering it in the form of nanogel.


Sign in / Sign up

Export Citation Format

Share Document