Study on Reactive Blend Systems of PA1010/ABS/PP

2011 ◽  
Vol 239-242 ◽  
pp. 3146-3149
Author(s):  
Jia Min Zhang ◽  
Ming Yi Zhu ◽  
Zhao Xun Lian

The impacts of multi-monomers melt grafting blends of maleic anhydride(MAH) and Styrene (St) on the crystallization behavior, morphology and mechanical properties of PA1010/ABS/PP blends were studied through the methods of SEM,themal analysis, mechanical properties analysis. The results showed that the graft copolymer generated in situ by the anhydride groups of g-PP and the amino end of PA1010 reduced the interfacial tension of blends efficiently, and the interaction of the styrene groups of the graft copolymer and ABS is helpful to improve the compatibility of three components during the melt blending process. The size of dispersed phase in blends is reduced obviously and the mechanical properties have a great improvement when the percentage of g-PP in the PA1010/ABS/PP blends increases to 10%. The tensile strength of the compatibilized PA1010/ABS/PP blends is improved by 11.7%,and the impact strength and elongation at break are increased 4 times and 4.9 times, respectively.

2012 ◽  
Vol 32 (8-9) ◽  
pp. 487-492 ◽  
Author(s):  
Jiamin Zhang ◽  
Yongfang Li ◽  
Yong Zhu ◽  
Maojin Cui ◽  
Xiaoying Jiang

Abstract The ternary blends of three versatile polymers of polyamide 1010 (PA1010), polypropylene (PP), and ABS resin (ABS) were studied. As a compatibilizer, PP was multimonomer melt grafted in the presence of maleic anhydride (MAH), styrene (St), and dicumyl peroxide. The effects of multimonomers melt grafting blends of MAH and St on the crystallization behavior, morphology, and mechanical properties of PA1010/ABS/PP blends were investigated. The results showed that the graft copolymer generated in situ by the anhydride groups of grafted PP (g-PP) and the amino end of PA1010 has reduced the interfacial tension of blends efficiently. The interaction of St groups of the graft copolymer with ABS was helpful to improve the compatibility of the three components during melt blending process. The size of dispersed phases in the blends was reduced remarkably and the mechanical pro­perties were greatly improved when the content of g-PP in PA1010/ABS/PP blends is increased to 10%. The tensile strength of the compatibilized PA1010/ABS/PP blends was improved by a factor of 11.7, whereas the impact strength and elongation at break were increased by 4 and 4.9 times, respectively. The introduction of multimonomer melt g-PP is shown to be an effective approach to modifying immiscible multipolymer blends, which have many potential applications.


2011 ◽  
Vol 306-307 ◽  
pp. 1735-1740
Author(s):  
Yan Li Dou ◽  
Chun Ling Zhang ◽  
Guoen Sun ◽  
Wen Hui Xu

Rare earth yttria (Y2O3) reinforced polystyrene composites were prepared by melt blending process. Mechanical properties, wear resistance of the PS/Y2O3 composites were characterized in contrast to neat PS. The improvement of the mechanical properties and wear resistance was attributed to the reinforcing effect of Y2O3 powder. Well distribution of Y2O3 powder in the PS matrix and good interfacial bonding were achieved by pretreated of Y2O3 using titanate coupling and dispersant followed by calcinations process. Results indicated that both of the Y2O3 powder pretreatment process and melt blending process have significant effects on the composite properties. When the Y2O3 content were 2.8wt%, the modify effect to PS was optimal. When the Y2O3 calcined at 900°C was used, the impact of the composites were best, other performance improvements have also been good. When the Y2O3 content of 1.4wt%, the wear resistance of the composites were best.


2011 ◽  
Vol 189-193 ◽  
pp. 533-536 ◽  
Author(s):  
Jia Min Zhang ◽  
Ming Yi Zhu ◽  
Zhao Xun Lian ◽  
Rong Zhu

With the melt grafting method using styrene (St) as co-monomer to maleic anhydride (MAH),the VERSIFY (V ethylene-propylene copolymer of the content of ethylene is 12%) was grafted. Different graft yield materials, V-g-(MAH-co-St) (g-V) were obtained. Nylon 6 (PA6)/ PP blends were prepared using twin-screw extruder. Using MFR, SEM, IR and mechanical properties testing analysis methods, morphology and mechanical properties of PA6/PP blends were studying on the different graft yield g-V. The results showed with increasing the graft yield, the minimum melt flow rate decreased and the size of the PP dispersed phase became smaller and more uniform. The addition of taller graft yield materials remarkably improved that the anhydride group in g-V reacted with the amine end groups of the PA6, and PP-PA6 copolymers were formed in situ, which effectively improved the compatibility between PP and PA6. The size of PP domains in the PA6 matrix was significantly reduced. Multi-monomer melt grafting can obtain a high rate of graft material. From the MAH: St = 0.5 to the MAH: St = 1, the grafting yield increased significantly. Continuing to improve MAH: St ratio, the magnitude of changes of graft yield of grafting decreases. Different grafting yield of multi-monomer g-V toughened PA6, a high rate of graft effect was good.


2011 ◽  
Vol 284-286 ◽  
pp. 1886-1889 ◽  
Author(s):  
Xiao Ming Sang ◽  
Lei Zhang ◽  
Run Zeng Wang ◽  
Xing Gang Chen ◽  
Man An ◽  
...  

The polystyrene/styrene-ethylene/butylene-styrene composites were prepared by melt blending process in this paper. The mechanical properties of PS/SEBS composites were analyzed. The results showed that the impact strength of PS/SEBS composites could be increased with the content increasing of SEBS, meanwhile the tensile strength was lower than pure polystyrene. When the content of SEBS increased to 13 wt.%, the impact strength of PS/SEBS composites was 2.4 times higher than that of pure PS. The fractured surfaces of the specimens were characterized by scanning electron microscopy(SEM). The results showed that the impact fractured surfaces produced a lot of sliding along with the addition of SEBS. The particles of SEBS could be well dispersed in polystyrene matrix. From rheological properties studies and the values of the torque, it was suggested that the maximum torque of PS/SEBS composites decreased drastically.


2005 ◽  
Vol 21 (4) ◽  
pp. 261-276 ◽  
Author(s):  
Sani Amril Samsudin ◽  
Azman Hassan ◽  
Munirah Mokhtar ◽  
Syed Mustafa Syed Jamaluddin

Blends of polystyrene (PS) with polypropylene (PP) are usually developed to overcome the inherent brittleness of PS. However, PS with PP are immiscible and (in the absence of a compatibiliser) incompatible. The present study investigated the effects of styrene-b (ethylene-co-butylene)-b-styrene (SEBS) on the mechanical properties and compatibility of PS-rich PS/PP blends. Using a Brabender PL2000 twin-screw extruder, blends of PS/PP in various compositions ranging from 100-60 wt% PS with and without SEBS were prepared and injection moulded. The overall results clearly showed that the mechanical properties of PS/PP blends are dependent on blend composition (ratio of PS/PP) and SEBS content. The impact strength and elongation at break of the PS/PP blends increase with SEBS content, at the expense of tensile strength and flexural modulus. The improvements in impact strength and elongation at break with the addition of SEBS are due to the improved interfacial adhesion between the dispersed phase (PP) and matrix phase (PS). The improvement in miscibility of the PS/PP blend with the addition of SEBS is supported by DMA analysis. This showed that the 60/40 PS/PP blends possess two endothermic peaks whereas 60/40/25 PS/PP/SEBS blends have a single endothermic peak at 102 °C, indicating that they have an improved miscibility. The effectiveness of SEBS in enhancing the blends depends on the blend composition. A significant improvement was observed upon addition of more than 10 phr of SEBS into the 70/30 and 60/40 PS/PP blends, but not much improvement in the case of the 90/10 and 80/20 PS/PP blends. However, a higher SEBS content is more effective at higher PS contents, as illustrated by the 90/10/25 PS/PP/SEBS blends having higher impact strengths than 60/40/25 PS/PP/SEBS. The optimum blend, based on achieving a balance between toughness (impact strength) and stiffness (flexural modulus), is 90/10/25 PS/PP/SEBS, followed by 80/20/25 PS/PP/SEBS.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1953
Author(s):  
Mingtao Sun ◽  
Shuang Huang ◽  
Muhuo Yu ◽  
Keqing Han

The melt blending of polylactic acid (PLA) and thermoplastic silicone polyurethane (TPSiU) elastomer was performed to toughen PLA. The molecular structure, crystallization, thermal properties, compatibility, mechanical properties and rheological properties of the PLA/TPSiU blends of different mass ratios (100/0, 95/5, 90/10, 85/15 and 80/20) were investigated. The results showed that TPSiU was effectively blended into PLA, but no chemical reaction occurred. The addition of TPSiU had no obvious effect on the glass transition temperature and melting temperature of PLA, but slightly reduced the crystallinity of PLA. The morphology and dynamic mechanical analysis results demonstrated the poor thermodynamic compatibility between PLA and TPSiU. Rheological behavior studies showed that PLA/TPSiU melt was typically pseudoplastic fluid. As the content of TPSiU increased, the apparent viscosity of PLA/TPSiU blends showed a trend of rising first and then falling. The addition of TPSiU had a significant effect on the mechanical properties of PLA/TPSiU blends. When the content of TPSiU was 15 wt%, the elongation at break of the PLA/TPSiU blend reached 22.3% (5.0 times that of pure PLA), and the impact strength reached 19.3 kJ/m2 (4.9 times that of pure PLA), suggesting the favorable toughening effect.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1137
Author(s):  
Sascha Stanic ◽  
Thomas Koch ◽  
Klaus Schmid ◽  
Simone Knaus ◽  
Vasiliki-Maria Archodoulaki

Blends of two long-chain branched polypropylenes (LCB-PP) and five linear polypropylenes (L-PP) were prepared in a single screw extruder at 240 °C. The two LCB-PPs were self-created via reactive extrusion at 180 °C by using dimyristyl peroxydicarbonate (PODIC C126) and dilauroyl peroxide (LP) as peroxides. For blending two virgin and three recycled PPs like coffee caps, yoghurt cups and buckets with different melt flow rate (MFR) values were used. The influence of using blends was assessed by investigating the rheological (dynamic and extensional rheology) and mechanical properties (tensile test and impact tensile test). The dynamic rheology indicated that the molecular weight as well as the molecular weight distribution could be increased or broadened. Also the melt strength behavior could be improved by using the two peroxide modified LCB-PP blends on the basis of PODIC C126 or PEROXAN LP (dilauroyl peroxide). In addition, the mechanical properties were consistently enhanced or at least kept constant compared to the original material. In particular, the impact tensile strength but also the elongation at break could be increased considerably. This study showed that the blending of LCB-PP can increase the investigated properties and represents a promising option, especially when using recycled PP, which demonstrates a real “up-cycling” process.


2013 ◽  
Vol 747 ◽  
pp. 645-648 ◽  
Author(s):  
Koay Seong Chun ◽  
Salmah Husseinsyah ◽  
Hakimah Osman

Polypropylene/Cocoa Pod Husk (PP/CPH) biocomposites with different maleated polypropylene (MAPP) content were prepared via melt blending process using Brabender Plastrograph mixer. The tensile strength and tensile modulus of PP/CPH biocomposites increased with increasing of MAPP content. The PP/CPH biocomposites with 5 phr of MAPP showed the optimum improvement on tensile properties. However, the increased of MAPP content reduced the elongation at break of PP/CPH biocomposites. At 5 phr of MAPP content, PP/CPH biocomposites showed lowest elongation at break. Scanning electron microscope confirms the PP/CPH biocomposites with MAPP have better filler-matrix interaction and adhesion due to the effect of MAPP.


2012 ◽  
Vol 32 (6-7) ◽  
pp. 435-444 ◽  
Author(s):  
Hsin-Tzu Liao ◽  
Chin-San Wu

Abstract Melt blending of polylactide (PLA), poly(ε-caprolactone) (PCL), and wood flour (WF) was performed in an effort to overcome the major drawbacks (brittleness and high price) of PLA. In addition, the acrylic acid (AA)-grafted PLA70PCL30 (PLA70PCL30-g-AA) was used as the alternative for the preparation of ternary blends to improve the compatibility and the dispersability of WF within the PLA70PCL30 matrix. As expected, PCL improved the elongation at break and the toughness of PLA but decreased the tensile strength and modulus. Because the hydrophilic WF is dispersed physically in the hydrophobic PLA70PCL30 matrix, as the result of Fourier transform infrared analysis, the mechanical properties of PLA70PCL30 became noticeably worse when it was blended with WF. This problem was successfully conquered by using PLA70PCL30-g-AA to replace PLA70PCL30 due to the formation of an ester carbonyl group between PLA70PCL30-g-AA and WF. Furthermore, the PLA70PCL30-g-AA/WF blend provided a plateau tensile strength at break when the WF content was up to 50 wt%. PLA70PCL30/WF exhibited a tensile strength at break of approximately 3–25 MPa more than PLA70PCL30-g-AA/WF. By using p-cresol and tyrosinase, the enzymatic biodegradable test showed that PLA70PCL30-g-AA is somewhat more biodegradable than PLA70PCL30 because the former has better water absorption. After 16 weeks, the weight loss of the PLA70PCL30/WF (50 wt%) composite was >80%. PLA70PCL30-g-AA/WF exhibited a weight loss of approximately 1–12 wt% more than PLA70PCL30-g-AA/WF. It was also found that the addition of WF to PLA70PCL30 or PLA70PCL30-g-AA decreased the crystallinity of PLA and PCL in PLA70PCL30 or PLA70PCL30-g-AA and then increased their biodegradable property.


2013 ◽  
Vol 681 ◽  
pp. 256-259
Author(s):  
Xiu Qi Liu ◽  
He Qin Xing ◽  
Li Li Zhao ◽  
Dan Wang

In our study, a new kind of foam composite was prepared by melt blending with PVC as the matrix and carbon black (CB) as the filler, the standard-spline was made in the dumbbell system prototype. Tensile strength and elongation at break were measured at 25°C。When the CB was added greater than 2.0%, with the increase of CB added, the determination of sample mechanical index began to decline, when the CB content was greater than 9%, tensile strength and elongation at break of the composites remained basically unchanged.


Sign in / Sign up

Export Citation Format

Share Document