Study on the Evaluation of Fatigue Life of RC Beams Strengthened with FRP Laminates

2011 ◽  
Vol 250-253 ◽  
pp. 2079-2084
Author(s):  
Li Hua Huang ◽  
Tian Qing Li ◽  
Yue Fang Wang

Extensive tests have shown that externally bonded fiber reinforced polymer (FRP) laminates are particularly suited for improving the short-term and long-term behavior of deficient reinforced concrete (RC) beam. Fatigue tests conducted to date indicate that fatigue life of RC beam bonded with FRP laminates lies in the response of steel rebar. Study on the method of nominal elastic stress (strain) for evaluating life-span of FRP strengthened beam is carried out in this paper. By analyzing fatigue tests, the acceptable stress concentration factors and S-N curves are suggested to be used to account for the fatigue behavior of RC beams strengthened with FRP laminates. Analytical results are compared with experimental data from two sets of fatigue tests on stresses and life-span, which shows agreeable trend. Based on the findings, the approach of nominal elastic stress (strain) can be extended to evaluate the fatigue life of RC beam bonded with FRP laminates.

2012 ◽  
Vol 166-169 ◽  
pp. 1657-1662
Author(s):  
Xu Jun Chen ◽  
Xiao E Zhu ◽  
Zhong Yang ◽  
Mu Xiang Dai

Based on the fatigue test for flexural performance of five reinforced concrete beams, the variation characteristics of the crack development, concrete strain, steel strain, fiber strain with the cycle number of the fatigue load were analyzed, and the effect of hybrid fiber sheets and basalt fiber reinforced polymer(BFRP)sheets on flexural fatigue performance of the strengthened beam was studied. The results show that the accumulated damage of RC beams strengthened with hybrid fiber sheets was slowed down significantly, the anti-crack property was much improved, and the fatigue life was greatly prolonged. Compared with the ordinary RC beam and the RC beam strengthened with double BFRP sheets, the fatigue life of RC beams strengthened with hybrid CFRP/BFRP(C/BFRP) sheets and hybrid CFRP/GFRP(C/GFRP) sheets was increased by 291.26%, 298.63% and 10.73%, 13.53%.


PCI Journal ◽  
2022 ◽  
Vol 67 (1) ◽  
Author(s):  
Jörn Remitz ◽  
Martin Empelmann

Pretensioned concrete beams are widely used as bridge girders for simply supported bridges. Understanding the fatigue behavior of such beams is very important for design and construction to prevent fatigue failure. The fatigue behavior of pretensioned concrete beams is mainly influenced by the fatigue of the prestressing strands. The evaluation of previous test results from the literature indicated a reduced fatigue life in the long-life region compared with current design methods and specifications. Therefore, nine additional high-cycle fatigue tests were conducted on pretensioned concrete beams with strand stress ranges of about 100 MPa (14.5 ksi). The test results confirmed that current design methods and specifications overestimate the fatigue life of embedded strands in pretensioned concrete beams.


2018 ◽  
Vol 165 ◽  
pp. 21002 ◽  
Author(s):  
Antonio J. Abdalla ◽  
Douglas Santos ◽  
Getúlio Vasconcelos ◽  
Vladimir H. Baggio-Scheid ◽  
Deivid F. Silva

In this work 300M steel samples is used. This high-strength steel is used in aeronautic and aerospace industry and other structural applications. Initially the 300 M steel sample was submitted to a heat treatment to obtain a bainític structure. It was heated at 850 °C for 30 minutes and after that, cooled at 300 °C for 60 minutes. Afterwards two types of surface treatments have been employed: (a) using low-power laser CO2 (125 W) for introducing carbon into the surface and (b) plasma nitriding at a temperature of 500° C for 3 hours. After surface treatment, the metallographic preparation was carried out and the observations with optical and electronic microscopy have been made. The analysis of the coating showed an increase in the hardness of layer formed on the surface, mainly, among the nitriding layers. The mechanical properties were analyzed using tensile and fatigue tests. The results showed that the mechanical properties in tensile tests were strongly affected by the bainitic microstructure. The steel that received the nitriding surface by plasma treatment showed better fatigue behavior. The results are very promising because the layer formed on steel surface, in addition to improving the fatigue life, still improves protection against corrosion and wear.


2014 ◽  
Vol 891-892 ◽  
pp. 1451-1456
Author(s):  
Elena Bassoli ◽  
Andrea Baldini ◽  
Andrea Gatto ◽  
Antonio Strozzi ◽  
Lucia Denti

Difficult-to cut-materials are associated with premature tool failure, most likely in the case of complex geometries and this shapes. However, Nickel-based alloys are commonly used in high-temperature and aerospace applications, where thin deep holes are often required. Then, the only viable manufacturing solution relies on non-contact processes, like electrodischarge (ED) drilling. Morphology of ED machined surfaces is significantly different than obtained by metal-cutting operation and is known to jeopardize fatigue strength, but the extent needs to be gauged and related to the process parameters. Aim of the paper is to study the effect of holes (0.8 mm diameter, aspect ratio 10) produced by ED drilling on the fatigue life of Inconel 718. Rotating bending fatigue tests are carried out on specimens drilled under two ED setups, as well as with a traditional cutting tool. Specimens free from holes are fatigued under the same conditions for comparison. Based on previous studies, extremal ED parameters are selected, giving best surface finish versus highest productivity. S-N curves show that the ED process causes a decrease of the fatigue resistance with respect to traditional drilling, whereas the effect of different ED setups is negligible. Maximum productivity can thus be pursued with no threat to fatigue performance. The fatigue limit variation is quantified by using the superposition effect principle: ED drilling causes an increase of the stress concentration factor around 25% if compared to traditional drilling. The macroscopic fatigue behavior is integrated with a study of the effects of the different drilling processes in the micro-scale, by means of a microstructural and fractographic analysis.


Author(s):  
Melody Mojib ◽  
Rishi Pahuja ◽  
M. Ramulu ◽  
Dwayne Arola

Abstract Metal Additive Manufacturing (AM) has become a popular method for producing complex and unique geometries, especially gaining traction in the aerospace and medical industries. With the increase in adoption of AM and the high cost of powder, it is critical to understand the effects of powder recycling on part performance to move towards material qualification and certification of affordable printed components. Due to the limitations of the Electron Beam Melting (EBM) process, current as-printed components are susceptible to failure at limits far below wrought metals and further understanding of the material properties and fatigue life is required. In this study, a high strength Titanium alloy, Ti-6Al-4V, is recycled over time and used to print fatigue specimens using the EBM process. Uniaxial High Cycle Fatigue tests have been performed on as-printed and polished cylindrical specimens and the locations of crack initiation and propagation have been determined through the use of a scanning electron microscope. This investigation has shown that the rough surface exterior is far more detrimental to performance life than the powder degradation occurring due to powder reuse. In addition, the effects of the rough surface exterior as a stress concentration is evaluated using the Arola-Ramulu. The following is a preliminary study of the effects powder recycling and surface treatments on EBM Ti-6Al4V fatigue life.


2016 ◽  
Vol 35 (3) ◽  
pp. 225-234 ◽  
Author(s):  
Hasan Kaya ◽  
Mehmet Uçar

AbstractIn this study, the effects of equal channel angular pressing (ECAP) on high-cycle fatigue and fatigue surface morphology of AA7075 have been investigated at a constant temperature (483 K) and the “C” route for four passes at ECAP process. ECAPed and as-received specimens were tested by four-point bending fatigue device. Fatigue tests were carried out by using 100, 120 and 140 MPa strength values. ECAPed specimens were characterized for each pass with optical microscope (OM), scanning electron microscope (SEM), energy-dispersive spectroscope (EDS), transmission electron microscope (TEM), selected area electron diffraction (SAED) and hardness measurements. Fracture surfaces of the specimens were also characterized with SEM. The results show that the highest hardness values (137 HV) and the best fatigue life (5.4 × 107for 100 MPa) were measured in ECAPed four-pass sample. For this reason hardness values and fatigue life were increased with increasing number of severe plastic deformation (SPD) process.


2019 ◽  
Vol 300 ◽  
pp. 09003
Author(s):  
Benaïssa Malek ◽  
Catherine Mabru ◽  
Michel Chaussumier

The purpose of the present research project is to study multiaxial fatigue behavior of 2618 alloy. The influence of mean stress on the fatigue behavior under tension and torsion is particularly investigated. Fatigue tests under combined tensile-torsion, in or out of phase, as well as combined tensile-torsion-internal pressure tests have also been conducted. Multiaxial fatigue results are analyzed according to Fatemi-Socie criterion to predict the fatigue life.


2018 ◽  
Vol 165 ◽  
pp. 08002 ◽  
Author(s):  
Hamza Lamnii ◽  
Moussa Nait-Abdelaziz ◽  
Georges Ayoub ◽  
Jean-Michel Gloaguen ◽  
Ulrich Maschke ◽  
...  

Polymers operating in various weathering conditions must be assessed for lifetime performance. Particularly, ultraviolet (UV) radiations alters the chemical structure and therefore affect the mechanical and fatigue properties. The UV irradiation alters the polymer chemical structure, which results into a degradation of the mechanical and fatigue behavior of the polymer. The polymer properties degradation due to UV irradiation is the result of a competitive process of chain scission versus post-crosslinking. Although few studied investigated the effect of UV irradiation on the mechanical behaviour of thermoplastics, fewer examined the UV irradiation effect on the fatigue life of polymers. This study focuses on investigating the effect of UV irradiation on the fatigue properties of bulk semi-crystalline polymer; the low density Polyethylene (LDPE). Tensile specimens were exposed to different dose values of UV irradiation then subjected to fatigue loading. The fatigue tests were achieved under constant stress amplitude at a frequency of 1Hz. The results show an important decrease of the fatigue limit with increasing absorbed UV irradiation dose.


2014 ◽  
Vol 891-892 ◽  
pp. 87-92 ◽  
Author(s):  
Benjamin Withy ◽  
Stephen Campbell ◽  
Glenn Stephen

The Royal New Zealand Air Force (RNZAF) utilised the split sleeve cold expansion process to increase the fatigue life of fastener holes in the wings of the C130 transport fleet. As part of the validation of the fatigue improvements offered by the process the Defence Technology Agency conducted a series of fatigue tests on cold expanded fastener holes in aluminium 7075-T651, including specimens with corrosion induced after the cold expansion process had been performed. This research conducted an analysis of fatigue crack origins and modelled the stress concentration factors generated as a result of the corrosion pits. These results were used to explain the differing fatigue life and s-n curves produced by corroded and non-corroded fatigue specimens and the location of crack initiation sites around corroded cold expanded fastener holes.


2006 ◽  
Vol 306-308 ◽  
pp. 1343-1348 ◽  
Author(s):  
Guowen Yao ◽  
Pei Yan Huang ◽  
Chen Zhao

Externally bonded carbon fiber reinforced polymer (CFRP) materials are well suited to the rehabilitation and reinforcement of civil engineering structures due to their high specific strength, specific stiffness and corrosion resistance. To probe the fatigue behavior of CFRP strengthened concrete structures, three point bending experiments of reinforced concrete (RC) beams strengthened with carbon fibre laminate (CFL) under constant amplitude loading were performed. The histories of midspan flexibility and bending stiffness of strengthened beams were recorded automatically. And the linear curve between fatigue strength and the logarithm of fatigue life was obtained. The failure modes go through concrete cracking, CFL debonding from concrete and steel bars yielding and fracture with increasing cycles of fatigue loading. Bonded CFL increases the ductility of strengthened RC beam and results in dense distribution of cracks compared with normal RC beam, and it’s bending stiffness at damage state as well. The fatigue damage evolvement shows three stages of nucleation, steady expansion and failure. Then the failure mechanism was studied and a cumulative damage model was proposed to describe the fatigue damage and fracture process of CFL strengthened RC beams under constant amplitude loading.


Sign in / Sign up

Export Citation Format

Share Document