Experiment Study on the Durability of Dry-Mixing Self-Compacting Concrete

2011 ◽  
Vol 250-253 ◽  
pp. 493-496 ◽  
Author(s):  
Lan Zong ◽  
Shi Ping Zhang ◽  
Pei Xin Liang

Durability of dry-mixing self-compacting concrete was evaluated through carbonation testing, freeze-thaw testing and chloride ions diffusion testing. The results indicate that carbonation resistance, frost resistance and chloride ions diffusion of durability of dry-mixing self-compacting concrete are excellent, compared with normally vibrated concrete (NVC). Durability of dry-mixing self-compacting concrete shows a better pore structure. Furthermore, the more the content of coarse aggregates is, the poorer the pore structure becomes.

2012 ◽  
Vol 174-177 ◽  
pp. 721-725 ◽  
Author(s):  
Ming Bao Gao ◽  
Yan Ru Zhao ◽  
Xiao Yan He

With the fast freeze-thaw test method, the c50 steel fiber self-compacting concrete was carried out 300 tests of freeze-thaw cycle. In the process of freeze-thaw cycles, it determined by the quality of the concrete specimen, dynamic elastic modulus and strength, and analyzed the steel fibers and their different contents on frost resistance of self-compacting concrete impact. The results showed that: steel fiber self-compacting concrete in freeze-thaw cycle can play constrained role in the quality loss, dynamic elastic modulus and intensity, and can significantly improve the self-compacting concrete frost resistance. Within a certain range, the more steel fiber, the stronger of frost resistance.


2014 ◽  
Vol 584-586 ◽  
pp. 960-963 ◽  
Author(s):  
De Zhi Wang ◽  
Yin Yan Zhang ◽  
Yun Fang Meng

Internal curing was especially beneficial to improve concrete performance. The super absorbent polymer and fly ash were used in the concrete and the frost resistance of concrete was studied. The result indicated that the super absorbent polymer changed the pore structure, increased the quantity of the pore, decreased the strength loss 5-10% after 250 freeze-thaw cycles and improved the frost resistance of concrete.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 154
Author(s):  
Marija Krstic ◽  
Julio F. Davalos ◽  
Emanuele Rossi ◽  
Stefan C. Figueiredo ◽  
Oguzhan Copuroglu

Recent studies have shown promising potential for using Glass Pozzolan (GP) as an alternative supplementary cementitious material (SCM) due to the scarcity of fly ash and slag in the United States. However, comprehensive studies on the freeze–thaw (FT) resistance and air void system of mixtures containing GP are lacking. Therefore, this study aimed to evaluate GP’s effect on FT resistance and characterize mixtures with different GP contents, both macro- and microscopically. In this study, six concrete mixes were considered: Three mixes with 20%, 30% and 40% GP as cement replacements and two other comparable mixes with 30% fly ash and 40% slag, as well as a mix with 100% Ordinary Portland cement (OPC) as a reference. Concrete samples were prepared, cured and tested according to the ASTM standards for accelerated FT resistance for 1000 cycles and corresponding dynamic modulus of elasticity (Ed). All the samples showed minimal deterioration and scaling and high F/T resistance with a durability factor of over 90%. The relationships among FT resistance parameters, air-pressured method measurements of fresh concretes and air void analysis parameters of hardened concretes were examined in this study. X-ray micro-tomography (micro-CT scan) was used to evaluate micro-cracks development after 1000 freeze–thaw cycles and to determine spatial parameters of air voids in the concretes. Pore structure properties obtained from mercury intrusion porosimetry (MIP) and N2 adsorption method showed refined pore structure for higher cement replacement with GP, indicating more gel formation (C-S-H) which was verified by thermogravimetric analysis (TGA).


2019 ◽  
Vol 9 (23) ◽  
pp. 5109 ◽  
Author(s):  
Miguel C. S. Nepomuceno ◽  
Luís F. A. Bernardo

Self-compacting concrete (SCC) shows to have some specificities when compared to normal vibrated concrete (NVC), namely higher cement paste dosage and smaller volume of coarse aggregates. In addition, the maximum size of coarse aggregates is also reduced in SCC to prevent blocking effect. Such specificities are likely to affect the results of non-destructive tests when compared to those obtained in NVC with similar compressive strength and materials. This study evaluates the applicability of some non-destructive tests to estimate the compressive strength of SCC. Selected tests included the ultrasonic pulse velocity test (PUNDIT), the surface hardness test (Schmidt rebound hammer type N), the pull-out test (Lok-test), and the concrete maturity test (COMA-meter). Seven sets of SCC specimens were produced in the laboratory from a single mixture and subjected to standard curing. The tests were applied at different ages, namely: 1, 2, 3, 7, 14, 28, and 94 days. The concrete compressive strength ranged from 45 MPa (at 24 h) to 97 MPa (at 94 days). Correlations were established between the non-destructive test results and the concrete compressive strength. A test variability analysis was performed and the 95% confidence limits for the obtained correlations were computed. The obtained results for SCC showed good correlations between the concrete compressive strength and the non-destructive tests results, although some differences exist when compared to the correlations obtained for NVC.


2012 ◽  
Vol 455-456 ◽  
pp. 781-785
Author(s):  
Ping Lu ◽  
Xin Mao Li ◽  
Xue Qiang Ma ◽  
Wei Bo Huang

. This paper mainly studied the properties of PAE polyurea coated concrete under coactions of salt fog and freeze-thaw. After exposed salt fog conditions for 200d, T3, B2, F2 and TM four coated concrete relative dynamic elastic modulus have small changes, but different coated concrete variation amplitude is different. T3 coated concrete after 100 times of freeze-thaw cycle the relative dynamic elastic modulus began to drop, 200 times freeze-thaw cycle ends, relative dynamic elastic modulus variation is the largest, decrease rate is 95%, TM concrete during 200 times freeze-thaw cycle, relative dynamic elastic modulus almost no change, B2 concrete and F2 concrete the extent of change between coating T3 and TM. After 300 times the freeze-thaw cycle coated concrete didn't appear freeze-thaw damage phenomenon. Four kinds of coating concrete relative dynamic elastic modulus variation by large to small order: T3 coated concrete > B2 coated concrete >F2 coated concrete > TM coated concrete, concrete with the same 200d rule. Frost resistance order, by contrast, TM coated concrete > B2 coated concrete > F2 coated concrete > T3 coated concrete.


2010 ◽  
Vol 150-151 ◽  
pp. 825-828
Author(s):  
Yan Wang ◽  
Di Tao Niu ◽  
Yuan Yao Miao ◽  
Nai Qi Jiao

The concrete microstructure can affect its macroscopic properties, such as the strength and durability, etc. Based on the experimental study of cube compressive strength of steel fibre reinforced concrete, splitting tensile strength, flexural strength, and using by mercury intrusion method to test the pore structure of steel fibrous, this paper analyzes the influence of fibre on concrete pore structure. And then on mechanical properties of concrete from microcosmic perspective.


2014 ◽  
Vol 584-586 ◽  
pp. 1917-1921
Author(s):  
Jun Jie Zhang ◽  
Rui Hong Shao ◽  
Xiang Yi Meng

Analyze the influence factors of mix proportion affecting concrete freeze-thaw damage. Use the five main performance indexes of the concrete, which are compressive strength, strength of extension, impermeability grade, and frost resistance grade and per unit volume cost concrete, as the objective function of multi-objective optimization equation. Invoke the fgoalattain function in the MATLAB Optimization Toolbox to solve. The optimized parameters of mix proportion of frost resistance construction of unit concrete in cold region are: concrete 1532.6kg, water 910kg, sand 5510.6kg, 5-20mm cobblestone 3747.2kg、20-40mm cobblestone 3658.6kg、40-80mm cobblestone 4733.5kg、80-150mm cobblestone 4738.1kg, and the dosage of water reducing agent is 7.3kg.


2021 ◽  
Vol 325 ◽  
pp. 194-199
Author(s):  
Ámos Dufka ◽  
Tomáš Žlebek ◽  
Tomáš Melichar

The article deals with the influence of crystallization additives on the life of self-compacting concrete (so-called SCC concrete), which are exposed to chemically aggressive environments. The focus is not only on the effect of the crystallization additive on the characteristics of the capillary-pore structure of SCC concrete, but especially long life durability of self-compacting concrete (two years expozition). The effect of individual types of aggressive environment is assessed on the basis of a set of physico-mechanical and physico-chemical analyzes.


Sign in / Sign up

Export Citation Format

Share Document