Study of Preparation on the Flake Silver Coating over Copper Powder for Electronic Industry

2011 ◽  
Vol 275 ◽  
pp. 165-169
Author(s):  
Xiao Yun Zhu ◽  
Man Dong

Flake copper powder is coated with silver by using a solution containing [Ag(NH3)]+. Factors such as copper particle size distribution, [Ag(NH3)]+ concentrations and the dispersing agent are studied and correlated with the silver content of coated copper and electric conductivity. At the condition of silver concentration of 0.8 mol/L and dispersing agent of 1.0g/L a powder of copper coated with silver with electric conductivity of 0.8×10-3Ω•cm is obtained. XRD patterns indicate that the powder consists of only the Cu and Ag phases without other intermediate phases. SEM results with different silver contents reveal that when Ag content rises, its surface topography transforms through the steps: individual particles →small islands→continuous 2D layers →multi-layers.

2011 ◽  
Vol 412 ◽  
pp. 251-254 ◽  
Author(s):  
Xiao Yun Zhu ◽  
Man Dong ◽  
Xu Xiao Yi

Flake copper powder is coated with silver by using a solution containing [Ag (NH3)]+. Factors such as copper particle size distribution, [Ag (NH3)]+ concentrations and the dispersing agent are studied and correlated with the silver content of coated copper and electric conductivity. At the condition of silver concentration of 0.8 mol/L and dispersing agent of 1.0g/L a powder of copper coated with silver with electric conductivity of 0.8×10-3Ω·cm is obtained. XRD patterns indicate that the powder consists of only the Cu and Ag phases without other intermediate phases. SEM results with different silver contents reveal that when Ag content rises, its surface topography transforms through the steps: individual particles → small islands → continuous 2D layers → multi-layers.


2011 ◽  
Vol 109 ◽  
pp. 91-95
Author(s):  
Xiao Feng Tian ◽  
Wei Ke Zhang

A fast and facile wet chemistry method has been developed for preparing monodispersed silver coated copper composite particles. Copper powder is coated using a solution containing [Ag (NH3)] +. The effect of the copper particle size distribution, the concentrations of [Ag (NH3)] + on composite particles conductivity were investigated. The composite particle with electric conductivity of 0.8×10-3 Ω•cm is obtained at 0.8 mol/L of Ag+ and1.0 g/L of dispersing agent. Copper powder loaded with silver particles morphologies range from individual particles to small islands, to the continuous multi-layers structure with Ag+ concentration increases.


2012 ◽  
Vol 512-515 ◽  
pp. 141-146
Author(s):  
Xiao Yun Zhu ◽  
Lie Hu ◽  
Man Dong

This paper presents the process of preparing spherical silver-coated copper powder with a silver content of 30-50%, using chemical reduction and by adjusting the silver-coating process. By means of SEM, XRD, grain size analyser, digital ohmmeter and differential thermal analyser, the surface topology, structure and conductivity of silver-coated copper powder and raw copper powder are characterised. The results show that the spherical silver-coated copper powder has superior compact surface, complete coverage, a coated layer reaching a thickness of 336nm and excellent conductivity and anti-oxidation property.


2003 ◽  
Vol 68 (7) ◽  
pp. 1233-1242 ◽  
Author(s):  
Orhan Turkoglu ◽  
Mustafa Soylak ◽  
Ibrahim Belenli

Chloro(phenyl)glyoxime, a vicinal dioxime, and its Ni(II), Cu(II) and Co(II) complexes were prepared. XRD patterns of the complexes point to similar crystal structures. IR and elemental analysis data revealed the 1:2 metal-ligand ratio in the complexes. The Co(II) complex is a dihydrate. Temperature dependence of electrical conductivity of the solid ligand and its complexes was measured in the temperature range 25-250 °C; it ranged between 10-14-10-6 Ω-1 cm-1 and increased with rising temperature. The activation energies were between 0.61-0.80 eV. The Co(II) complex has lower electric conductivity than the Ni(II) and Cu(II) complexes. This difference in the conductivity has been attributed to differences in the stability of the complexes.


2015 ◽  
Vol 1112 ◽  
pp. 47-52 ◽  
Author(s):  
Frida Ulfah Ermawati ◽  
Suasmoro Suasmoro ◽  
Suminar Pratapa

A study of liquid mixing route to synthesize high purity Mg0.8Zn0.2TiO3 nanopowder, a candidate dielectric ceramics, has been successfully performed. Formation of the phases on the dried powder was studied using TG/DTA, XRD and FT-IR data. Rietveld analysis on the collected XRD patterns confirmed the formation of solid solution in the system. Such solid solution can be obtained from the powder calcined at 500 °C, but calcination at 550 °C gave rise to the most optimum molar purity up to 98.5% without intermediate phases. The role of Zn ions on the formation of solid solution was also discussed. Homogeneity of particle size distribution and nano-crystallinity of the system was verified from the particle size analyzer data, TEM image and the Rietveld analysis output.


1980 ◽  
Vol 27 (1) ◽  
pp. 53-59 ◽  
Author(s):  
Karl-Joachim Euler ◽  
Paul Herger ◽  
Heinrich Metzendorf ◽  
Bernd Sperlich

2013 ◽  
Vol 800 ◽  
pp. 256-259
Author(s):  
Wang Qun ◽  
Ye Fan Li ◽  
Dong Mei Li ◽  
Zhi Xue Qu

The Ag coating was deposited on the surface of Al-Ag alloy powder by electroless plating process. 10 wt% of AgNO3 was put in the powder for precursor replacement reaction, and then added the powder into electroless plating bath which contained glucose solution, solution of silver ammonia, thiourea solution, tartaric acid solution and absolute ethanol. The effects of formula components were analyzed. The surface morphology of the prepared composite particles was studied with SEM and their chemical compositions were confirmed by XRD. With the chemical etching method, silver content of the powder was determined. The studies have shown that an uniform, complete and dense silver coating for the Al-Ag composite powders was generated by this method, with the silver content being 20wt%, and the conductivity was favorable.


2014 ◽  
Vol 607 ◽  
pp. 3-6
Author(s):  
Che Murad Mardziah ◽  
Iis Sopyan ◽  
Koay Mei Hyie ◽  
N.R. Nik Roselina

The fabrication of Sr hydroxyapatite (HA) porous scaffolds was done by using polymeric sponge method. To prepare the porous samples, the synthesized SrHA nanopowders were mixed with distilled water and appropriate amount of dispersing agent followed by drying in the ambient air and sintering at 1300°C. The compressive strength of the materials was strongly influenced by the porosity, while there was almost no dependence on the crystallinity of the powders since XRD patterns showed high crystallinity of HA phase for all porous samples. Morphological evaluation by FESEM revealed that the SrHA scaffolds were characterized by macro-micro interconnected porosity, which replicates the morphology of the cancellous bone. Compression test on the porous scaffolds demonstrated that doping 10 mol% of strontium in HA has increased the compressive strength by a factor of two compared to the undoped HA with 1.81±0.26 MPa at 41% porosity.


2015 ◽  
Vol 766-767 ◽  
pp. 315-319
Author(s):  
R. Ramesh ◽  
S. Suresh Kumar ◽  
S. Gowrishankar

In the present work AA1100/ Al3Ni MMC was successfully fabricated using the in-situ method of stirring and squeeze casting. The effects of amount of Ni powder on the formation and mechanical behavior of Al-Al3Ni MMC were investigated. The fabricated MMC was characterized using XRD and optical microscope. The XRD patterns clearly indicated the presence of Al3Ni particles without the formation of intermediate phases. The in-situ formed Al3Ni particles were found to have uniform distribution, good bonding and clear interface. The mechanical and tribological properties such as hardness, Ultimate Tensile Strength (UTS) and dry sliding wear behavior of AA1100/ Al3Ni MMC were compared for stir and squeeze casted MMCs with different percentage in weight of Al3Ni (5, 10 wt. %) and it was found that properties improved with increase in Al3Ni content and all properties of squeeze casted MMCs were superior to stir casted MMCs.


Sign in / Sign up

Export Citation Format

Share Document