Influence of Catalyst and Temperature on Gasification Performance

2011 ◽  
Vol 281 ◽  
pp. 90-95
Author(s):  
Yu Feng ◽  
Bo Xiao ◽  
Klaus Goerner ◽  
Ravi Naidu

In the present study the catalytic steam gasification of biomass to produce hydrogen-rich gas with calcined dolomite and Nano-NiO/γ-Al2O3 as catalyst in an externally heated fixed bed reactor was investigated. The influence of the catalyst and reactor temperature on gasification performance was studied at the temperature range of 700°C-900°C. Over the ranges of experimental conditions examined, Nano-NiO/γ-Al2O3 and calcined dolomite both revealed better catalytic performance, at the presence of steam, tar was completely decomposed as temperature increases from 800°C to 900°C. Higher temperature resulted in more H2 and CO2 production, and dry gas yield. The highest H2 content of 58.27V% and the highest H2 yield of 2.23 Nm3/ kg biomass were observed at the highest temperature level of 900°C.

2011 ◽  
Vol 281 ◽  
pp. 78-83 ◽  
Author(s):  
Yu Feng ◽  
Bo Xiao ◽  
Klaus Goerner ◽  
Ravi Naidu

In the present study the catalytic steam gasification of biomass to produce hydrogen-rich gas with calcined dolomite as catalyst in an externally heated fixed bed reactor was investigated. The influence of the reactor temperature and particle size on yield and product composition was studied at the temperature range of 700°C-900°C. Over the ranges of experimental conditions examined, tar was completely decomposed as temperature increases from 800°C to 900°C. Higher temperature and smaller particle size resulted in more H2 and CO2 production, and dry gas yield. The highest H2 content of 58.27 V%, and the highest H2 yield of 2.23 Nm3/ kg biomass were observed at the highest temperature level of 900°C when the particle size was below 0.125mm.


2013 ◽  
Vol 634-638 ◽  
pp. 479-489 ◽  
Author(s):  
Shuang Hui Deng ◽  
Jian Hang Hu ◽  
Hua Wang ◽  
Juan Qin Li ◽  
Wei Hu

Biomass gasification was separated from catalytic pyrolysis in a two-stage fixed bed reactor with precalcined copper slag catalysts placed in a secondary reactor. The effects of gasification temperature (720-950°C), steam to biomass (S/B) mass ratio (0-2g/g), precalcined copper slag to biomass (C/B) mass ratio (0-2g/g) and copper slag precalcined at different temperatures (800-1000°C) on characteristics of biomass gasification were investigated. The experimental results show that the increase of gasification temperature, S/B mass ratio, C/B mass ratio and precalcination temperature are all favorable for raising gasification efficiency and enhancing the H2 production. With copper slag precalcined at 1000°C for 5 hours as catalyst under the experimental conditions examined, the H2 content, the hydrogen yield, the gas yield and the gasification efficiency reach the maximum of 59.16%, 0.72 Nm3/kg, 1.22 Nm3/kg and 77.56%,respectively.


Author(s):  
Radwa A. El-Salamony ◽  
Sara A. El-Sharaky ◽  
Seham A. Al-Temtamy ◽  
Ahmed M. Al-Sabagh ◽  
Hamada M. Killa

Abstract Recently, because of the increasing demand for natural gas and the reduction of greenhouse gases, interests have focused on producing synthetic natural gas (SNG), which is suggested as an important future energy carrier. Hydrogenation of CO2, the so-called methanation reaction, is a suitable technique for the fixation of CO2. Nickel supported on yttrium oxide and promoted with cobalt were prepared by the wet-impregnation method respectively and characterized using SBET, XRD, FTIR, XPS, TPR, and HRTEM/EDX. CO2 hydrogenation over the Ni/Y2O3 catalyst was examined and compared with Co–Ni/Y2O3 catalysts, Co% = 10 and 15 wt/wt. The catalytic test was conducted with the use of a fixed-bed reactor under atmospheric pressure. The catalytic performance temperature was 350 °C with a supply of H2:CO2 molar ratio of 4 and a total flow rate of 200 mL/min. The CH4 yield was reached 67%, and CO2 conversion extended 48.5% with CO traces over 10Co–Ni/Y2O3 catalyst. This encourages the direct methanation reaction mechanism. However, the reaction mechanism over Ni/Y2O3 catalyst shows different behaviors rather than that over bi-metal catalysts, whereas the steam reforming of methane reaction was arisen associated with methane consumption besides increase in H2 and CO formation; at the same temperature reaction.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3347
Author(s):  
Arslan Mazhar ◽  
Asif Hussain Khoja ◽  
Abul Kalam Azad ◽  
Faisal Mushtaq ◽  
Salman Raza Naqvi ◽  
...  

Co/TiO2–MgAl2O4 was investigated in a fixed bed reactor for the dry reforming of methane (DRM) process. Co/TiO2–MgAl2O4 was prepared by modified co-precipitation, followed by the hydrothermal method. The active metal Co was loaded via the wetness impregnation method. The prepared catalyst was characterized by XRD, SEM, TGA, and FTIR. The performance of Co/TiO2–MgAl2O4 for the DRM process was investigated in a reactor with a temperature of 750 °C, a feed ratio (CO2/CH4) of 1, a catalyst loading of 0.5 g, and a feed flow rate of 20 mL min−1. The effect of support interaction with metal and the composite were studied for catalytic activity, the composite showing significantly improved results. Moreover, among the tested Co loadings, 5 wt% Co over the TiO2–MgAl2O4 composite shows the best catalytic performance. The 5%Co/TiO2–MgAl2O4 improved the CH4 and CO2 conversion by up to 70% and 80%, respectively, while the selectivity of H2 and CO improved to 43% and 46.5%, respectively. The achieved H2/CO ratio of 0.9 was due to the excess amount of CO produced because of the higher conversion rate of CO2 and the surface carbon reaction with oxygen species. Furthermore, in a time on stream (TOS) test, the catalyst exhibited 75 h of stability with significant catalytic activity. Catalyst potential lies in catalyst stability and performance results, thus encouraging the further investigation and use of the catalyst for the long-run DRM process.


2011 ◽  
Vol 6 (1) ◽  
Author(s):  
Amir Rahimi ◽  
Sogand Hamidi

In this study, the performance of a fixed–bed tubular reactor for the production of phthalic anhydride is mathematically analyzed. The conversion degree and reactor temperature values are compared with the measured one in a tubular reactor applied in Farabi petrochemical unit in Iran as well as reported data in the literature for a pilot plate. The comparisons are satisfactory. The effects of some operating parameters including reactor length, feed temperature, reactor pressure, and existence of an inert in the catalytic bed are investigated. The optimum value of each parameter is determined on the basis of the corresponding operating conditions.


2013 ◽  
Vol 133 ◽  
pp. 127-133 ◽  
Author(s):  
Jingbo Wang ◽  
Bo Xiao ◽  
Shiming Liu ◽  
Zhiquan Hu ◽  
Piwen He ◽  
...  

2010 ◽  
Vol 35 (2) ◽  
pp. 397-404 ◽  
Author(s):  
Adam Smoliński ◽  
Krzysztof Stańczyk ◽  
Natalia Howaniec

2020 ◽  
Vol 9 (1) ◽  
pp. 107-112 ◽  
Author(s):  
I. Istadi ◽  
Teguh Riyanto ◽  
Luqman Buchori ◽  
Didi Dwi Anggoro ◽  
Roni Ade Saputra ◽  
...  

Plasma-assisted catalytic cracking is an attractive method for producing biofuels from vegetable oil. This paper studied the effect of reactor temperature on the performance of plasma-assisted catalytic cracking of palm oil into biofuels. The cracking process was conducted in a Dielectric Barrier Discharge (DBD)-type plasma reactor with the presence of spent RFCC catalyst. The reactor temperature was varied at 400, 450, and 500 ºC. The liquid fuel product was analyzed using a gas chromatography-mass spectrometry (GC-MS) to determine the compositions. Result showed that the presenceof plasma and catalytic role can enhance the reactor performance so that the selectivity of the short-chain hydrocarbon produced increases. The selectivity of gasoline, kerosene, and diesel range fuels over the plasma-catalytic reactor were 16.43%, 52.74% and 21.25%, respectively, while the selectivity of gasoline, kerosene and diesel range fuels over a conventional fixed bed reactor was 12.07%, 39.07%, and 45.11%, respectively. The increasing reactor temperature led to enhanced catalytic role of cracking reaction,particularly directing the reaction to the shorter hydrocarbon range. The reactor temperature dependence on the liquid product components distribution over the plasma-catalytic reactor was also studied. The aromatic and oxygenated compounds increased with the reactor temperature.©2020. CBIORE-IJRED. All rights reserved


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ahmad Asghari ◽  
Mohammadreza Khanmohammadi Khorrami ◽  
Sayed Habib Kazemi

AbstractThe present work introduces a good prospect for the development of hierarchical catalysts with excellent catalytic performance in the methanol to aromatic hydrocarbons conversion (MTA) process. Hierarchical H-ZSM5 zeolites, with a tailored pore size and different Si/Al ratios, were synthesized directly using natural kaolin clay as a low-cost silica and aluminium resource. Further explored for the direct synthesis of hierarchical HZSM-5 structures was the steam assisted conversion (SAC) with a cost-effective and green affordable saccharide source of high fructose corn syrup (HFCS), as a secondary mesopore agent. The fabricated zeolites exhibiting good crystallinity, 2D and 3D nanostructures, high specific surface area, tailored pore size, and tunable acidity. Finally, the catalyst performance in the conversion of methanol to aromatic hydrocarbons was tested in a fixed bed reactor. The synthesized H-ZSM5 catalysts exhibited superior methanol conversion (over 100 h up to 90%) and selectivity (over 85%) in the methanol conversion to aromatic hydrocarbon products.


2011 ◽  
Vol 356-360 ◽  
pp. 1528-1534
Author(s):  
Wei Fang Dong

A series of non-precious metal oxides catalysts were prepared for low-temperature selective catalytic reduction (SCR) of NOx with NH3 in a fixed bed reactor. The catalytic performance was evaluated by the removal efficiency of NOx and N2selectivity which were respectively detected by flue gas analyzer and flue gas chromatograph. Furthermore, the components of gas products from the above experiments were analysed with 2010 GC-MS. The results illustrated that the MnO2exhibited the highest NOx conversion to 95.46% and the highest selectivity of N2to 100% at temperature of 393K, then followed ZrO2, Al2O3and Fe2O3.


Sign in / Sign up

Export Citation Format

Share Document