Influences of Complex Modification of RE and P on the Wear Resistance of Hypereutectic Al-24Si Alloy
The influences of RE and P complex modifications on microstructures and wear-resistance of hypereutectic Al-24Si alloy were studied. The results show that the complex modifications of P and RE make the coarse block primary crystal silicon refined and their edges and angles are passivated, the large needle-like network eutectic silicon be modified to the fine lamella or particle ones. The optimum modification effect occurs with 0.10%P and 0.9%RE. The complex modification of P and RE can also obviously improve wear resistance of hypereutectic Al-24Si alloy. When the tested alloys modified with 0.10%P and 0.9%RE, the optimal wear resistance of modified alloys is obtained. The weight loss is decreased to 3.9mg from 5.4mg of the unmodified alloy, decreased by 27.8%. The abrasive wear caused by the breaking of Si phase is dominant wear mechanism of the alloy. It can be attributed to the refinement of primary silicon and eutectic silicon particles and the increase of strength and ductibility of alloys caused by the complex modification of P and RE.