Effect of Melting Process on Zr Content and Grain Refinement in ZE41A Alloy

2011 ◽  
Vol 284-286 ◽  
pp. 1651-1655
Author(s):  
Hong Hui Liu ◽  
Zhi Liang Ning ◽  
Fu Yang Cao ◽  
Yu Chen Zhang ◽  
Jian Fei Sun

The effects of melting process on Zr content and grain size in ZE41A alloy were investigated in this study. The results show that the soluble Zr increases with the increased addition content of Mg-Zr master, up to 0.87%. The ratio of Zr addition content to soluble Zr content changes within 3.86-4.8. The melt temperature has little effect on soluble Zr content. Grain size grows and both soluble Zr and total Zr decrease with the prolonged isothermal holding of the melt.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Soo-Bae Kim ◽  
Young-Hee Cho ◽  
Min-Su Jo ◽  
Jae-Gil Jung ◽  
Young-Kook Lee ◽  
...  

AbstractUltrasonic melt treatment (UST) was applied to Al-7Si-2Cu-1Mg melt at various temperatures of 620, 650, 700 and 785 °C. MgAl2O4 particles which were often found to be densely populated along oxide films, became effectively dispersed and well-wetted by UST. Transmission electron microscopy work combined with crystallography analysis clearly indicates that MgAl2O4 particles can act as α-Al nucleation site with the aid of UST. However, with UST, grain refinement occurred only at temperature of 620 °C and the grain size increased from 97 to 351 μm with increase of melt temperature to 785 °C for UST. In quantitative analysis of grain size and MgAl2O4 particle diameter, it was found that ultrasonic de-agglomeration decreased mean particle size of the MgAl2O4 particles, significantly reducing size from 1.2 to 0.4 μm when temperature increased from 620 to 785 °C. Such a size reduction with increased number of MgAl2O4 particles does not always guarantee grain refinement. Thus, in this work, detailed condition for achieving grain refinement by UST is discussed based on quantitative measurement. Furthermore, we tried to suggest the most valid grain refinement mechanism among the known mechanisms by investigation of the relationship between grain size and particle size with variation of melt temperature.


2013 ◽  
Vol 765 ◽  
pp. 336-340 ◽  
Author(s):  
Guo Sheng Peng ◽  
Yun Wang ◽  
Zhong Yun Fan

The effect of intensive melt shearing and Zr concentration on grain refinement of Mg‑0.5Ca-xZr alloy has been investigated experimentally. It was found that without intensive melt shearing, the grain size of Mg-0.5Ca alloy decreased from 290 µm to 76 µm when the Zr concentration is varied between 0 and 1 wt.%. However, intensive melt shearing makes the grain size of the same alloys first decrease and then increase with increasing Zr addition. The minimum grain size (85 µm) was achieved at 0.4 wt.% Zr.


2014 ◽  
Vol 790-791 ◽  
pp. 167-172
Author(s):  
Guo Sheng Peng ◽  
Yun Wang ◽  
Ming Xu Xia ◽  
Zhong Yun Fan

The interaction between Zr addition and intensive melt shearing on grain refinement of commercial purity Mg has been investigated experimentally. It was found that, without intensive melt shearing, the grain structure of Mg is changed from columnar grains to equiaxed grains with the increase in Zr concentration. However, with intensive melt shearing, the grain structure of Mg undergoes a complex change as a function of Zr concentration; for instance, the grain structure showed equiaxed grains at 0.1wt. % Zr concentration, while it was changed to columnar grains at 1wt. % Zr concentration. It was noted that, particularly, under the intensive melt shearing condition, the grain size of Mg with minor addition of Zr (0.1%) was further decreased to 134 ± 4 μm compared with that of Mg without Zr addition (217 ± 15 μm).


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 806
Author(s):  
Liqing Sun ◽  
Shuai Sun ◽  
Haiping Zhou ◽  
Hongbin Zhang ◽  
Gang Wang ◽  
...  

In this work, vanadium particles (VP) were utilized as a novel reinforcement of AZ31 magnesium (Mg) alloy. The nanocrystalline (NC) AZ31–VP composites were prepared via mechanical milling (MM) and vacuum hot-press sintering. During the milling process, the presence of VP contributed to the cold welding and fracture mechanism, resulting in the acceleration of the milling process. Additionally, increasing the VP content accelerated the grain refinement of the matrix during the milling process. After milling for 90 h, the average grain size of AZ31-X wt % Vp (X = 5, 7.5, 10) was refined to only about 23 nm, 19 nm and 16 nm, respectively. In the meantime, VP was refined to sub-micron scale and distributed uniformly in the matrix, exhibiting excellent interfacial bonding with the matrix. After the sintering process, the average grain size of AZ31-X wt % VP (X = 5, 7.5, 10) composites still remained at the NC scale, which was mainly caused by the pinning effect of VP. Besides that, the porosity of the sintered composites was no more than 7.8%, indicating a good densification effect. As a result, there was little difference between the theoretical and real density. Compared to as-cast AZ31 Mg alloy, the microhardness of sintered AZ31-X wt % VP (X = 5, 7.5, 10) composites increased by 65%, 87% and 96%, respectively, owing to the strengthening mechanisms of grain refinement strengthening, Orowan strengthening and load-bearing effects.


2020 ◽  
Vol 39 (1) ◽  
pp. 595-598
Author(s):  
Cui Chaopeng ◽  
Zhu Xiangwei ◽  
Li Qiang ◽  
Zhang Min ◽  
Zhu Guangping

AbstractThe Mo/ZrO2 electrode was prepared by combining hydrothermal synthesis with powder metallurgy, and this new electrode material has a totally different microstructure from the conventional electrode. The grain size of the new electrode was fine, and the size of ZrO2 in the alloy reached 200 nm. According to the results, the Mo–ZrO2 electrode has better performance, because the erosion occurs along the grain boundaries. Meanwhile, the new electrode, based on its fine grain, can effectively improve the corrosion resistance of the electrode.


2013 ◽  
Vol 749 ◽  
pp. 407-413
Author(s):  
Hong Xu ◽  
Xin Zhang ◽  
Ji Ping Ren ◽  
Min Peng ◽  
Shi Yang ◽  
...  

The mechanical properties and corrosion performances of the ZL101 alloy modified by the composite master alloy were investigated. The results showed that the master alloy had not only obvious effect of grain refinement, but also a significant role in refining dendrite grain of ZL101 alloy. The grain size decreased dramatically from 150μm to 62μm when the addition of composite master alloy is up to 0.5%(mass fraction) and the temperature is 720 for 30 minutes,. Its tensile strength and elongation increased by 27% and 42% respectively. The grain refinement of ZL101 alloy decreased its corrosion performance. The morphology of Si changed into globular from needle modified by NaF, instead of AlTiB.


Author(s):  
H Jafarzadeh ◽  
K Abrinia

The microstructure evolution during recently developed severe plastic deformation method named repetitive tube expansion and shrinking of commercially pure AA1050 aluminum tubes has been studied in this paper. The behavior of the material under repetitive tube expansion and shrinking including grain size and dislocation density was simulated using the finite element method. The continuous dynamic recrystallization of AA1050 during severe plastic deformation was considered as the main grain refinement mechanism in micromechanical constitutive model. Also, the flow stress of material in macroscopic scale is related to microstructure quantities. This is in contrast to the previous approaches in finite element method simulations of severe plastic deformation methods where the microstructure parameters such as grain size were not considered at all. The grain size and dislocation density data were obtained during the simulation of the first and second half-cycles of repetitive tube expansion and shrinking, and good agreement with experimental data was observed. The finite element method simulated grain refinement behavior is consistent with the experimentally obtained results, where the rapid decrease of the grain size occurred during the first half-cycle and slowed down from the second half-cycle onwards. Calculations indicated a uniform distribution of grain size and dislocation density along the tube length but a non-uniform distribution along the tube thickness. The distribution characteristics of grain size, dislocation density, hardness, and effective plastic strain were consistent with each other.


2013 ◽  
Vol 284-287 ◽  
pp. 147-151
Author(s):  
Tso Fu Mark Chang ◽  
Takashi Nagoshi ◽  
Chiemi Ishiyama ◽  
Tatsuo Sato ◽  
Masato Sone

Ultrathin (2 emulsion (SCE). Incomplete coverage of the Cu plate, the working electrode, by electroplated Ni and non-uniform Ni films with defects were obtained when conventional electroplating at 1 A/dm2 with 30 sec of deposition time was used. When electroplating with SCE (ESCE) was applied, complete coverage, defect-free and uniform UTNFs were obtained. SEM and AFM showed surface morphology of the UTNFs was covered by spherical-shaped particles with ~10 nm in diameter, which was expected to be individual Ni grains because the size was consistent with grain size of Ni films reported when ESCE was applied. High H2 solubility in CO2, periodic-plating-characteristic after applying ESCE, and improved transport efficiency of the reactive species are believed to be the main reasons to cause effects of grain refinement and suppression in formation of the defects. Thickness of the UTNFs was 11.97±1.82 nm when the deposition time was 15 sec, and the thickness increased to 38.45±1.71 nm when the deposition time was increased to 45 sec.


2013 ◽  
Vol 712-715 ◽  
pp. 627-632
Author(s):  
Min Liu ◽  
Qing Xian Ma

Aiming at the disadvantages of low utilization ratio of steel ingot, uneven microstructure properties and long production period in the solid steel ingot forging process of heavy cylinder forgings such as reactor pressure vessel, a new shortened process using hollow steel ingot was proposed. By means of modeling of lead sample and DEFORM-3D numerical simulation, the deformation law and grain refinement behavior for 162 ton hollow steel ingot upsetting at different reduction ratios, pressing speeds and friction factors were investigated, and the formation rule of inner-wall defects in upsetting of hollow steel ingots with different shape factors was further analyzed. Simulation results show that the severest deformation occurs in the shear zone of meridian plane in the upsetting process of hollow steel ingot, and the average grain size in the shear zone is the smallest. As pressing speed increases, the forming load gradually increases and the deformation uniformity gets worse, while the average grain size decreases. An increase in friction factor can increase the peak value of effective strain, but it significantly reduces the deformation uniformity, increases the forming load and goes against grain refinement. Moreover, the four kinds of defects on the inner wall of steel ingot can be eliminated effectively by referring to the plotted defect control curve for hollow steel ingot during high temperature upsetting.


Sign in / Sign up

Export Citation Format

Share Document