Large-Sized TiO2/SiO2 Macroporous Materials for Photo-Degradation of Organic Compounds in Water and Air

2011 ◽  
Vol 306-307 ◽  
pp. 1157-1161 ◽  
Author(s):  
Rui Feng Zhang ◽  
Jian Ye ◽  
Neng Bing Long

Large-sized macroporous TiO2/SiO2 catalysts were prepared via filling a novel SiO2 support with a solution of tetrabutyl titanate in cyclohexane, undergoing subsequent in situ hydrolysis and final calcination to 600 °C. The loaded nano-particles of TiO2 were uniformly dispersed on the nano-layer of SiO2 support, the interaction of TiO2 and SiO2 was strengthened through the formation of Si-O-Ti bonds. Methyl orange was introduced in the macroporous catalyst as a target compound to investigate the photo-degradation of the loaded nano-TiO2. Under radiation of 365 nm UV light the highest degradation rate constant of 1.78/h was observed from the as-prepared catalyst containing 54.5 wt.% of TiO2. Formaldehyde and xylene in gas states can be captured and photo-degraded by the catalyst that was placed in a self-designed air-circulation device equipped with UV lights and electric fans. The high effectiveness of the catalysts in the cleaning of the indoor air should be owing to its special macroporous structure and the long-term photo-catalytic activity of loaded nano-TiO2.

2012 ◽  
Vol 545 ◽  
pp. 111-118 ◽  
Author(s):  
Zakiah Ahmad ◽  
Martin P. Ansell ◽  
Dave Smedley ◽  
Paridah Md Tahir

The mechanical properties of adhesive materials change over time, especially when they are subjected to long-term loading regimes. The significance of this is often overlooked at the design stage. When adhesives are subjected to a constant load, they may deform continuously, depending on temperature, humidity and cross-link density. This progressive deformation is called creep and will continue until rupture or yielding causes failure. It is imperative that reliable accelerated tests be developed to determine the long-term time-dependent performance of adhesives under different environmental conditions. The long-term creep behaviors of thixotropic and room temperature cure epoxy based adhesives reinforced with nano-particles specially formulated for in-situ bonding of pultruded rod into timber for repair and strengthening of timber structures were investigated. In this study two epoxy-based adhesives with nano-particles (silica fume and rubber) addition were subjected to bending creep tests, in accelerated environments. Experimental data showed that the adhesives reinforced with nano-rubber particles showed less creep deformation than the unreinforced adhesives.


2015 ◽  
Vol 3 (12) ◽  
pp. 6455-6463 ◽  
Author(s):  
Kunlei Zhu ◽  
Xiaoyan Liu ◽  
Jiangyong Du ◽  
Jianhua Tian ◽  
Yun Wang ◽  
...  

Mesoporous single-grain layer anatase TiO2 nanosheets were first in situ synthesized without additives in a new methanol–tetrabutyl titanate system on a large scale via a simple and easily reproducible method and were applied successfully as anode materials for a long-term Li-ion battery.


Author(s):  
J. Liu ◽  
M. Pan ◽  
G. E. Spinnler

Small metal particles have peculiar chemical and physical properties as compared to bulk materials. They are especially important in catalysis since metal particles are common constituents of supported catalysts. The structural characterization of small particles is of primary importance for the understanding of structure-catalytic activity relationships. The shape and size of metal particles larger than approximately 5 nm in diameter can be determined by several imaging techniques. It is difficult, however, to deduce the shape of smaller metal particles. Coherent electron nanodiffraction (CEND) patterns from nano particles contain information about the particle size, shape, structure and defects etc. As part of an on-going program of STEM characterization of supported catalysts we report some preliminary results of CEND study of Ag nano particles, deposited in situ in a UHV STEM instrument, and compare the experimental results with full dynamical simulations in order to extract information about the shape of Ag nano particles.


2018 ◽  
Author(s):  
Elaine A. Kelly ◽  
Judith E. Houston ◽  
Rachel Evans

Understanding the dynamic self-assembly behaviour of azobenzene photosurfactants (AzoPS) is crucial to advance their use in controlled release applications such as<i></i>drug delivery and micellar catalysis. Currently, their behaviour in the equilibrium <i>cis-</i>and <i>trans</i>-photostationary states is more widely understood than during the photoisomerisation process itself. Here, we investigate the time-dependent self-assembly of the different photoisomers of a model neutral AzoPS, <a>tetraethylene glycol mono(4′,4-octyloxy,octyl-azobenzene) </a>(C<sub>8</sub>AzoOC<sub>8</sub>E<sub>4</sub>) using small-angle neutron scattering (SANS). We show that the incorporation of <i>in-situ</i>UV-Vis absorption spectroscopy with SANS allows the scattering profile, and hence micelle shape, to be correlated with the extent of photoisomerisation in real-time. It was observed that C<sub>8</sub>AzoOC<sub>8</sub>E<sub>4</sub>could switch between wormlike micelles (<i>trans</i>native state) and fractal aggregates (under UV light), with changes in the self-assembled structure arising concurrently with changes in the absorption spectrum. Wormlike micelles could be recovered within 60 seconds of blue light illumination. To the best of our knowledge, this is the first time the degree of AzoPS photoisomerisation has been tracked <i>in</i><i>-situ</i>through combined UV-Vis absorption spectroscopy-SANS measurements. This technique could be widely used to gain mechanistic and kinetic insights into light-dependent processes that are reliant on self-assembly.


2020 ◽  
Vol 10 (6) ◽  
pp. 849-859
Author(s):  
Radwa A. El-Salamony ◽  
Abeer A. Emam ◽  
Nagwa A. Badawy ◽  
Sara F. El-Morsi

Objective: ZnO nanoparticles were synthesized using wet impregnation method, and activated carbon from rice straw (RS) prepared through chemical route. Methods: The nano-composites ZnO-AC series were prepared with different ZnO:AC ratio of 10, 20, 50, and 70% to optimize the zinc oxide nanoparticles used. The obtained composites were characterized by FE-SEM, XRD, SBET, and optical techniques then used for the photo-degradation of Malachite green dye (MG) under visible light. Results: It was found that 10ZnO-AC exhibited excellent visible light photo-catalytic performance. The ·OH radicals’ formation is matching with photo-activity of the prepared composites. The photo-degradation efficiency of MG increased from 63% to 93%, when the 10ZnO-AC photocatalyst amount was increased from 0.5 to 6 g/L. Conclusion: The GC-MS technique was used to analyze the intermediates formed; up to 15 kinds of chemicals were identified as the degradation products.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sungmin O. ◽  
Rene Orth

AbstractWhile soil moisture information is essential for a wide range of hydrologic and climate applications, spatially-continuous soil moisture data is only available from satellite observations or model simulations. Here we present a global, long-term dataset of soil moisture derived through machine learning trained with in-situ measurements, SoMo.ml. We train a Long Short-Term Memory (LSTM) model to extrapolate daily soil moisture dynamics in space and in time, based on in-situ data collected from more than 1,000 stations across the globe. SoMo.ml provides multi-layer soil moisture data (0–10 cm, 10–30 cm, and 30–50 cm) at 0.25° spatial and daily temporal resolution over the period 2000–2019. The performance of the resulting dataset is evaluated through cross validation and inter-comparison with existing soil moisture datasets. SoMo.ml performs especially well in terms of temporal dynamics, making it particularly useful for applications requiring time-varying soil moisture, such as anomaly detection and memory analyses. SoMo.ml complements the existing suite of modelled and satellite-based datasets given its distinct derivation, to support large-scale hydrological, meteorological, and ecological analyses.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 368
Author(s):  
Lisdelys González-Rodríguez ◽  
Amauri Pereira de Oliveira ◽  
Lien Rodríguez-López ◽  
Jorge Rosas ◽  
David Contreras ◽  
...  

Ultraviolet radiation is a highly energetic component of the solar spectrum that needs to be monitored because is harmful to life on Earth, especially in areas where the ozone layer has been depleted, like Chile. This work is the first to address the long-term (five-year) behaviour of ultraviolet erythemal radiation (UVER) in Santiago, Chile (33.5° S, 70.7° W, 500 m) using in situ measurements and empirical modelling. Observations indicate that to alert the people on the risks of UVER overexposure, it is necessary to use, in addition to the currently available UV index (UVI), three more erythema indices: standard erythemal doses (SEDs), minimum erythemal doses (MEDs), and sun exposure time (tery). The combination of UVI, SEDs, MEDs, and tery shows that in Santiago, individuals with skin types III and IV are exposed to harmfully high UVER doses for 46% of the time that UVI indicates is safe. Empirical models predicted hourly and daily values UVER in Santiago with great accuracy and can be applied to other Chilean urban areas with similar climate. This research inspires future advances in reconstructing large datasets to analyse the UVER in Central Chile, its trends, and its changes.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
La Li ◽  
Weijia Liu ◽  
Kai Jiang ◽  
Di Chen ◽  
Fengyu Qu ◽  
...  

AbstractZn-ion hybrid supercapacitors (SCs) are considered as promising energy storage owing to their high energy density compared to traditional SCs. How to realize the miniaturization, patterning, and flexibility of the Zn-ion SCs without affecting the electrochemical performances has special meanings for expanding their applications in wearable integrated electronics. Ti3C2Tx cathode with outstanding conductivity, unique lamellar structure and good mechanical flexibility has been demonstrated tremendous potential in the design of Zn-ion SCs, but achieving long cycling stability and high rate stability is still big challenges. Here, we proposed a facile laser writing approach to fabricate patterned Ti3C2Tx-based Zn-ion micro-supercapacitors (MSCs), followed by the in-situ anneal treatment of the assembled MSCs to improve the long-term stability, which exhibits 80% of the capacitance retention even after 50,000 charge/discharge cycles and superior rate stability. The influence of the cathode thickness on the electrochemical performance of the MSCs is also studied. When the thickness reaches 0.851 µm the maximum areal capacitance of 72.02 mF cm−2 at scan rate of 10 mV s−1, which is 1.77 times higher than that with a thickness of 0.329 µm (35.6 mF cm−2). Moreover, the fabricated Ti3C2Tx based Zn-ion MSCs have excellent flexibility, a digital timer can be driven by the single device even under bending state, a flexible LED displayer of “TiC” logo also can be easily lighted by the MSC arrays under twisting, crimping, and winding conditions, demonstrating the scalable fabrication and application of the fabricated MSCs in portable electronics.


Sign in / Sign up

Export Citation Format

Share Document