Research on Electrochemical Properties of Alpha-Ni(OH)2 Prepared by Electrodeposition Method in the Ethanol and Water System

2011 ◽  
Vol 311-313 ◽  
pp. 1421-1424
Author(s):  
Zheng Jin ◽  
Bo Hong Li ◽  
Chuan Li Qin ◽  
Xiao Min Ren ◽  
Shan Tao Yan ◽  
...  

Electronic characterization, Electrochemical properties, Electrochemical techniques, Abstract. In this paper, the α-phase Ni(OH)2was directly deposited on the surface of foam nickel by electrochemical deposition technology. The characterization of the α-phase Ni(OH)2was studied by using X-ray diffraction(XRD), scanning electron microscopy(SEM), cyclic voltammetry(CV) and the constant charge-discharge. The specific capacitance of the a-phase Ni(OH)2electrode, measured using cyclic voltammetry at scan rate of 1mV•s-1, was found to be 2826.77F•g-1. For a simple supercapcitor, the highest specific capacitance(475.76 F•g-1at 30mA) is obtained at deposition voltage of 2.5V and deposition time of 50min.

2008 ◽  
Vol 368-372 ◽  
pp. 24-26 ◽  
Author(s):  
Hui Qing Fan ◽  
Jin Chen ◽  
Xiu Li Chen

Lead magnesium niobate-lead titanate (0.8Pb(Mg1/3Nb2/3)O3-0.2PbTiO3, PMN-PT) thick films in the thickness range about 75 μm have been successfully fabricated on Au-coated Al2O3 substrates by electrophoretic deposition (EPD). Non-aqueous colloidal suspensions suitable for EPD were prepared by mixing ultrasonically PMN-PT particles in ethanol with pH=6.0. The effect of EPD process parameters such as deposition voltage, deposition time and the specific deposition mass of PMN-PT particles were investigated. The EPD parameters were optimized in order to obtain crack-free, high-quality uniform ceramic films. The deposited pyrochlore-free PMN-PT thick films were sintered at 1000oC for 30 min, and the phase evolvement and the microstructure of the film were characterized by X-ray diffraction and scanning electron microscope.


2021 ◽  
Vol 10 (3) ◽  
pp. 1173-1182
Author(s):  
M. A. Nazri ◽  
Anis Nurashikin Nordin ◽  
L. M. Lim ◽  
M. Y. Tura Ali ◽  
Muhammad Irsyad Suhaimi ◽  
...  

Zinc batteries are a more sustainable alternative to lithium-ion batteries due to its components being highly recyclable. With the improvements in the screen printing technology, high quality devices can be printed with at high throughput and precision at a lower cost compared to those manufactured using lithographic techniques. In this paper we describe the fabrication and characterization of printed zinc batteries. Different binder materials such as polyvinyl pyrrolidone (PVP) and polyvinyl butyral (PVB), were used to fabricate the electrodes. The electrodes were first evaluated using three-electrode cyclic voltammetry, x-ray diffraction (XRD), and scanning electron microscopy before being fully assembled and tested using charge-discharge test and two-electrode cyclic voltammetry. The results show that the printed ZnO electrode with PVB as binder performed better than PVP-based ZnO. The XRD data prove that the electro-active materials were successfully transferred to the sample. However, based on the evaluation, the results show that the cathode electrode was dominated by the silver instead of Ni(OH)2, which leads the sample to behave like a silver-zinc battery instead of a nickel-zinc battery. Nevertheless, the printed zinc battery electrodes were successfully evaluated, and more current collector materials for cathode should be explored for printed nickel-zinc batteries.


2011 ◽  
Vol 345 ◽  
pp. 75-78 ◽  
Author(s):  
Wei Zhou ◽  
Man Lin Tan ◽  
Xiao Song Zhou

In this paper, a facilesolution method was employed to synthesize the graphene-NiO composite. SEM and XRD results indicated the graphene sheets were covered by the NiO nanoplates. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to measure the electrochemical properties of the composite. The specific capacitance reached 1292F/g at a scan rate of 5mV/s. The results show that this composite is a promising material for supercapacitor electrode.


2008 ◽  
Vol 63 (1-2) ◽  
pp. 98-106
Author(s):  
Concha Caravaca ◽  
Guadalupe De Córdoba

The electrochemistry of molten LiCl-KCl-GdCl3 at a reactive Al electrode has been studied at 723 to 823 K. Electrochemical techniques such as cyclic voltammetry and chronopotentiometry have been used in order to identify the intermetallic compounds formed. Cyclic voltammetry showed that, while at an inert W electrode GdCl3 is reduced to Gd metal in a single step at a potential close to the reduction of the solvent, at an Al electrode a shift towards more positive values occurs. This shift of the cathodic potential indicated a reduction of the activity of Gd in Al with respect to that ofW, due to the formation of alloys. The surface characterization of samples formed by both galvanostatic and potentiostatic electrolysis has shown the presence of two intermetallic compounds: GdAl3 and GdAl2. Using open-circuit chronopotentiometry it has been possible to measure the potentials at which these compounds are transformed into each other. The values of these potential plateaus, once transformed into e. f. m. values, allowed to determine the thermodynamic properties of the GdAl3 intermetallic compound.


2019 ◽  
Vol 946 ◽  
pp. 287-292
Author(s):  
Alexander Thoemmes ◽  
Ivan V. Ivanov ◽  
Alexey Ruktuev

The effect of Nb content on microstructure, mechanical properties and phase formation in as-melt and annealed binary Ti-Nb alloys were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) analysis. The content of Nb varied in the range 25-35 mass % leading to significant changes in the microstructure. The annealed and furnace-cooled binary Ti-Nb samples exhibited HCP martensitic α` phase at a Nb content below 27.5 mass % and metastable BCC β phase at higher contents of Nb. The mechanical properties of alloys depended strongly on the Nb content and type of the dominating phase.


2013 ◽  
Vol 631-632 ◽  
pp. 434-436
Author(s):  
Jiu Ming Liu ◽  
Jian Lei Wang ◽  
Shu Xia Ren

Using silicon powders as raw materials, adding nano-silicon nitride as a diluent and NH4Cl3 and FeCl3 as catalysts, α-phase silicon nitride powders were prepared by direct nitridation method. The silicon powders were first milled with 20% α-Si3N4 and 4% NH4Cl3 for 30 minutes. Then the mixture was heat-treated at 1300°C for 1 hour in the pure nitrogen gas. The phases and their content of the as-prepared product were detected by X-ray diffraction (XRD) and the microstructure was studied by scanning electron microscope (SEM). The results showed that the product mainly consisted ofα-Si3N4 with a mass fraction over 92% and were submicron-sized particles.


2015 ◽  
Vol 29 (Supplement 1) ◽  
pp. 1550254 ◽  
Author(s):  
Dan Yang ◽  
Wenmei Qiu ◽  
Jingcai Xu ◽  
Yanbing Han ◽  
Hongxiao Jin ◽  
...  

Modifications with different acids (HNO3, H2SO4, HCl and HF, respectively) were introduced to treat the activated carbons (ACs) surface. The microstructures and surface chemical properties were discussed by X-ray diffraction (XRD), thermogravimetric analysis (TGA), ASAP, Raman spectra and Fourier transform infrared (FTIR) spectra. The ACs electrode-based supercapacitors were assembled with 6 mol ⋅ L[Formula: see text] KOH electrolyte. The electrochemical properties were studied by galvanostatic charge–discharge and cyclic voltammetry. The results indicated that although the BET surface area of modified ACs decreased, the functional groups were introduced and the ash contents were reduced on the surface of ACs, receiving larger specific capacitance to initial AC. The specific capacitance of ACs modified with HCl, H2SO4, HF and HNO3 increased by 31.4%, 23%, 21% and 11.6%, respectively.


2015 ◽  
Vol 719-720 ◽  
pp. 137-140
Author(s):  
Ren Li Yang ◽  
Jun Shuang Zhou ◽  
Li Hou ◽  
Yu Feng Zhao ◽  
Fa Ming Gao

BCN nanoparticles sandwiched between carbon nanosheets were synthesized with the P123 and borate ammonium under nitrogen atmosphere. The samples were characterized by SEM, TEM, and EELS. The SEM and TEM images show BCN nanoparticles are attached on the carbon nanosheets. Cyclic voltammetry (CV) and galvanostatic charge-discharge measurements are used to evaluate electrochemical properties of the composites. The samples show the specific capacitance of 102 F/g at current density of 200mA/g and good durability.


Author(s):  
Lorena Cuéllar-Herrera ◽  
Elsa Arce-Estrada ◽  
Antonio Romero-Serrano ◽  
José Ortiz-Landeros ◽  
Román Cabrera-Sierra ◽  
...  

AbstractTwo hydrothermal techniques under microwave irradiation were used to synthesize γ-MnO2 from 90°C to 150°C in 10−30 min. The first technique is based on reducing KMnO4 with MnSO4, and the second one involves liquid-phase oxidation between MnSO4 and (NH4)2S2O8. The structures and morphologies of the samples were analyzed using X-ray diffraction, scanning electron microscopy, and N2 physisorption measurements. The electrochemical properties were evaluated through cyclic voltammetry and electrochemical impedance spectroscopy. The γ-MnO2 materials obtained by the first technique mainly exhibited nanorods with diameters of 40–60 nm, and the samples obtained by the second technique showed flower-like microspheres with diameters of 1−2 µm; each flower was composed of nanosheets with a thickness of 10−20 nm. The processing time directly depends on the size of the nanorods. The sample synthesized by the first technique at 150°C and 10 min has the highest specific surface area of up to 59.08 m2 g−1 and mean pore diameter of 34.11 nm. Furthermore, this sample exhibits a near-rectangular cyclic voltammetry curves and high specific capacitance of 331.3 F g−1 in 0.1 M Na2SO4 solution at 5 mV s−1 scan rate. Graphic abstract


2018 ◽  
Vol 96 (5) ◽  
pp. 477-483 ◽  
Author(s):  
Saeid Panahi ◽  
Moosa Es’haghi

In this work, PANI/MnCo2O4 nanocomposite was prepared via in-situ chemical polymerization method. Materials synthesized were characterized by FTIR spectroscopy, X-ray diffraction, and scanning electron spectroscopy. In addition, surface characterization of samples such as specific surface area, pore volume, and pore size distribution was studied. Supercapacitor capability of materials was investigated in 1 mol L–1 Na2SO4 solution using cyclic voltammetry in different potential scan rates and electrochemical impedance spectroscopy (EIS). The specific capacitance of materials was calculated, and it was observed that the specific capacitance of PANI/MnCo2O4 nanocomposite was 185 F g−1, much larger than PANI. Moreover, the prepared nanocomposite exhibited better rate capability in scan rate of 100 mV s−1 with respect to PANI. The EIS experiments revealed that the nanocomposite has lower charge transfer resistance compared with pure PANI. Subsequently, it was shown that the nanocomposite cycling performance was superior to the PANI cycling performance.


Sign in / Sign up

Export Citation Format

Share Document