Green Synthesis of Silver Nanoparticles Using Flos Sophorae immaturus Extract and Bactericidal Activity

2011 ◽  
Vol 317-319 ◽  
pp. 475-478
Author(s):  
Zhi Yun Du ◽  
Zhi Kai Tang ◽  
Rong Qing Mo ◽  
Yu Jing Lu ◽  
Yong Fu Jiang ◽  
...  

Silver nanoparticles (AgNPs) were rapidly synthesized by treating silver ions with the extract of a well-known Traditional Chinese Medicine herb, Flos Sophorae Immaturus, at room temperature. The AgNPs were characterized by UV–vis spectroscopy and zeta potentials analysis. The bactericidal activity of the AgNPs against S. aureus and E. coli was investigated. The results indicated that the AgNPs synthesized by Flos Sophorae Immaturus extract were water-soluble nanoparticles with 30-60 nm size, zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative, and the antibacterial activity of the green prepared AgNPs exhibited potent bactericidal activity on S. aureus and E. coli.

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
M. A. El-Sheikh

The water soluble photoinitiator (PI) 4-(trimethyl ammonium methyl) benzophenone chloride is used for the first time in the synthesis of silver nanoparticles (AgNPs). A new green synthesis method involves using PI/UV system, carboxymethyl starch (CMS), silver nitrate, and water. A mechanism of the reduction of silver ions to AgNPs by PI/UV system as well as by the newly born aldehydic groups was proposed. The synthesis process was assessed by UV-vis spectra and TEM of AgNPs colloidal solution. The highest absorbance was obtained using CMS, PI and AgNO3concentrations of 10 g/L, 1 g/L, and 1 g/L, respectively; 40°C; 60 min; pH 7; and a material : liquor ratio 1 : 20. AgNPs so-obtained were stable in aqueous solution over a period of three weeks at room temperature (~25°C) and have round shape morphology. The sizes of synthesized AgNPs were in the range of 1–21 nm and the highest counts % of these particles were for particles of 6–10 and 1–3 nm, respectively.


2017 ◽  
Vol 19 (4) ◽  
pp. 128-136 ◽  
Author(s):  
Saviour A. Umoren ◽  
Alexis M. Nzila ◽  
Saravanan Sankaran ◽  
Moses M. Solomon ◽  
Peace S. Umoren

Abstract Silver nanoparticles (AgNPs) have been synthesized in the presence of Strawberry fruit extract (SBFE) at room temperature. The synthesized AgNPs was characterized by UV-vis spectroscopy, SEM, EDS, XRD, TEM and FTIR. The UV-vis spectra of the AgNPs show SPR band at 450 nm. TEM results indicate that AgNPs are spherical in shape and size range between 7–65 nm. Antibacterial activity of the synthesized AgNPs has been assessed against Pseudomonas aeruginosa and Bacillus licheniformis. The results show that AgNPs exhibit inhibitory effect and effect is a function of AgNPs concentration. The antibacterial activity of the prepared AgNPs has been compared with two antibiotics, amoxicillin and ciprofloxacin. It is found that the antibiotics perform better than AgNPs.


2016 ◽  
Vol 12 (1) ◽  
pp. 70 ◽  
Author(s):  
Eli Rohaeti ◽  
Endang W Laksono ◽  
Anna Rakhmawati

<pre><span lang="EN-GB">Bacterial cellulose (C) and its composites were synthesized from rice waste water<strong> </strong>with addition of glycerol (G) and chitosan (Ch).</span><strong></strong><span lang="EN-GB">Antibacterial activity of the C, the bacterial cellulose-chitosan composite (CCh), and the bacterial  cellulose – glycerol - chitosan composite (CGCh) which were deposited silver nanoparticles against <em>S. aureus</em>, <em>E.</em> <em>coli</em>,  and yeast <em>C. albicans</em> has been conducted. Silver nanoparticles was prepared by chemical reduction of a silver nitrate solution, a trisodium citrate as a reductor, and a PVA as a stabilizer. The UV-Vis spectroscopy is used to determine the formation of silver nanoparticles. The characterization was conducted on the bacterial celluloses and those composites including the functional groups by the FTIR, the mechanical properties by Tensile Tester, photos surfaces by SEM, and the test of the antibacterial activity against <em>S</em>. <em>aureus</em>, <em>E. coli</em>, and <em>C. albicans</em> by diffusion method. The silver nanoparticle characterization indicates that the silver nanoparticles are formed at a wavelength of 418.80 nm. The antibacterial test showed an inhibitory effect of the C, the CCh, and the CGCh which are deposited  the silver nanoparticles against of <em>S. aureus</em>, <em>E. coli</em>,  and C.albicans. The CGChs which are deposited silver nanoparticles has the highest antimicrobial activity against the <em>Staphylococcus aureus</em> ATCC 25923. The CGs which are deposited silver nanoparticles provide the highest antimicrobial activity against the <em>E. coli</em> ATCC 25922 and the yeast <em>Candida albicans</em> ATCC 10231.</span></pre>


2020 ◽  
Vol 14 (3) ◽  
pp. 1941-1947
Author(s):  
Rama Sharma

In the present work, the chemical reduction method has been used to synthesize silver nanoparticles using stearic acid capping agents in different concentrations. These nanoparticles are characterized by ultraviolet-visible spectroscopy and dynamic light scattering (DLS). The size of the synthesized silver nanoparticles found between 80-100 nm and stable up to 5 months. These nanoparticles show a very good bactericidal influence on E. coli and S. aureus. In this method silver nanoparticles have synthesized at room temperature without using any inert atmosphere, this is the advantage of this method over others.


Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2245
Author(s):  
Anna Krzywicka ◽  
Elżbieta Megiel

In the present work, we report the studies on perfectly homogeneous nanocomposites composed of polystyrene-grafted silver nanoparticles (Ag@PS) as a bioactive fulfilment and a mixture of polystyrene (PS) and polyvinyl alcohol (PVA) as a matrix. The procedure developed by our group of the nanocomposites’ preparation consists of three steps: synthesis of narrow-dispersive AgNPs (5.96 ± 1.02 nm); grafting of narrowly dispersed polystyrene onto the surface of AgNPs; thermoforming with a mixture of PS/PVA. Kirby-Bauer (K-B) and Dynamic Shake Flask (DSF) assays revealed high antibacterial activity against a series of Gram(−) and Gram(+) bacteria strains of the fabricated nanocomposites at low silver content (0.5%). We showed that the doping of Ag/PS composites with PVA increases the antibacterial activity of composites. The hydrophilic component in the nanocomposites enables easier water migration inside the polymer matrix, which makes releasing silver nanoparticles and silver ions to the environment facile.


2019 ◽  
Vol 41 ◽  
pp. e45262
Author(s):  
Sivaji Asha ◽  
Palaniyandi Thirunavukkarasu

A novel green source Ziziphus mauritiana fresh young leaves was opted to synthesize silver nanoparticles and analyze its antibacterial activity. The bioactive compounds present in the plant extracts reduced silver ions to NPs, indicated by change in color from red to dark brown. In this study, we have successfully synthesized nanoparticles using Z. mauritiana aqueous leaf extract as a reducing agent and the reaction process of synthesized nanoparticles was monitored by UV-Vis spectroscopy. The UV-Vis absorption peak showed maximum adsorption at 420 nm confirmed the silver nanoparticles synthesis. Further characterization was carried out by FTIR and the results recorded a downward shift of absorption the bands between 400 to 4000 cm-1 indicates the formation of silver nanoparticles. Finally, the present research was exploited to study the antibacterial activity of synthesized nanoparticles produced Z. mauritiana was studied using different pathogenic bacteria such as Salmonella sp., Proteus sp., Bacillus sp., Klebsiella pneumonia and E.coli from the well diffusion results, the synthesized silver nanoparticles displayed the best antibacterial property as compared to the antibiotic has been reported in this paper. To the best of our knowledge, this is the first report that the Z. mauritiana aqueous extract facilitate the synthesis of silver nanoparticles and also exhibits antibacterial activity.


2016 ◽  
Vol 12 (1) ◽  
pp. 70 ◽  
Author(s):  
Eli Rohaeti ◽  
Endang W Laksono ◽  
Anna Rakhmawati

<pre><span lang="EN-GB">Bacterial cellulose (C) and its composites were synthesized from rice waste water<strong> </strong>with addition of glycerol (G) and chitosan (Ch).</span><strong></strong><span lang="EN-GB">Antibacterial activity of the C, the bacterial cellulose-chitosan composite (CCh), and the bacterial  cellulose – glycerol - chitosan composite (CGCh) which were deposited silver nanoparticles against <em>S. aureus</em>, <em>E.</em> <em>coli</em>,  and yeast <em>C. albicans</em> has been conducted. Silver nanoparticles was prepared by chemical reduction of a silver nitrate solution, a trisodium citrate as a reductor, and a PVA as a stabilizer. The UV-Vis spectroscopy is used to determine the formation of silver nanoparticles. The characterization was conducted on the bacterial celluloses and those composites including the functional groups by the FTIR, the mechanical properties by Tensile Tester, photos surfaces by SEM, and the test of the antibacterial activity against <em>S</em>. <em>aureus</em>, <em>E. coli</em>, and <em>C. albicans</em> by diffusion method. The silver nanoparticle characterization indicates that the silver nanoparticles are formed at a wavelength of 418.80 nm. The antibacterial test showed an inhibitory effect of the C, the CCh, and the CGCh which are deposited  the silver nanoparticles against of <em>S. aureus</em>, <em>E. coli</em>,  and C.albicans. The CGChs which are deposited silver nanoparticles has the highest antimicrobial activity against the <em>Staphylococcus aureus</em> ATCC 25923. The CGs which are deposited silver nanoparticles provide the highest antimicrobial activity against the <em>E. coli</em> ATCC 25922 and the yeast <em>Candida albicans</em> ATCC 10231.</span></pre>


2016 ◽  
Vol 12 (1) ◽  
Author(s):  
Eli Rohaeti

<pre><span lang="EN-GB">Bacterial cellulose (C) and its composites were synthesized from rice waste water<strong> </strong>with addition of glycerol (G) and chitosan (Ch).</span><strong></strong><span lang="EN-GB">Antibacterial activity of the C, the bacterial cellulose-chitosan composite (CCh), and the bacterial  cellulose – glycerol - chitosan composite (CGCh) which were deposited silver nanoparticles against <em>S. aureus</em>, <em>E.</em> <em>coli</em>,  and yeast <em>C. albicans</em> has been conducted. Silver nanoparticles was prepared by chemical reduction of a silver nitrate solution, a trisodium citrate as a reductor, and a PVA as a stabilizer. The UV-Vis spectroscopy is used to determine the formation of silver nanoparticles. The characterization was conducted on the bacterial celluloses and those composites including the functional groups by the FTIR, the mechanical properties by Tensile Tester, photos surfaces by SEM, and the test of the antibacterial activity against <em>S</em>. <em>aureus</em>, <em>E. coli</em>, and <em>C. albicans</em> by diffusion method. The silver nanoparticle characterization indicates that the silver nanoparticles are formed at a wavelength of 418.80 nm. The antibacterial test showed an inhibitory effect of the C, the CCh, and the CGCh which are deposited  the silver nanoparticles against of <em>S. aureus</em>, <em>E. coli</em>,  and C.albicans. The CGChs which are deposited silver nanoparticles has the highest antimicrobial activity against the <em>Staphylococcus aureus</em> ATCC 25923. The CGs which are deposited silver nanoparticles provide the highest antimicrobial activity against the <em>E. coli</em> ATCC 25922 and the yeast <em>Candida albicans</em> ATCC 10231.</span></pre>


2018 ◽  
Vol 2 (2) ◽  
Author(s):  
Nguyen Phuc Quan 1,2 ◽  
Tran Quoc Vinh 1 ◽  
Kieu Thi My Yen 1 ◽  
Le Vu Khanh Trang 2 ◽  
Nguyen Minh Ly 2 ◽  
...  

The synthesis of silver nanoparticles (Ag NPs) has been carried out using different methods, mainly by biological and chemical methods; however, comparing antibacterial activity of Ag NPs synthesized by these methods has not been conducted before. In this study, silver nanoparticles (Ag NPs) were synthesized by methods using reducing agent NaBH4/carboxymethyl cellulose (CMC) and fungal strain Trichoderma asperellum (T.asperellum). The formation of silver nanoparticles was observed visually by color change and identified by Ultraviolet-visible (UV – vis) spectroscopy. The transmission electron microscopy (TEM) image illustrated almost nanoparticles with spherical shape and average diameter of 4.1 ± 0.2 nm and 2.1 ± 0.2 nm of samples produced from chemical reduction and biosynthesis respectively. Both samples after 180 days storing have been separated lightly, but the agglomeration and absorbance peak shifting were not observed which proved the high stability of synthesized Ag NPs. Antimicrobial activity against human bacterial pathogen Escherichia coli (E. coli) showed that the inhibition zone produced by “biosynthesis” and “chemical reduction” Ag NPs were 3.17 cm and 2.42 cm respectively. With nanoparticles size smaller than 2 mm, antibacterial activity of “biosynthesis” Ag NPs against E. coli was 31 % higher than “chemical reduction” Ag NPs, although the concentration of Ag NPs produced by biosynthesis was about 10-fold less.


Author(s):  
Vidyasagar G M ◽  
Shankaravva B ◽  
R Begum ◽  
Imrose ◽  
Sagar R ◽  
...  

Microorganisms like fungi, actinomycetes and bacteria are considered nanofactories and are helpful in the production of nanoparticles useful in the welfare of human beings. In the present study, we investigated the production of silver nanoparticles from Streptomyces species JF714876. Extracellular synthesis of silver nanoparticles by Streptomyces species was carried out using two different media. Silver nanoparticles were examined using UV-visible, IR and atomic force microscopy. The size of silver nanoparticles was in the range of 80-100 nm. Antimicrobial activity of silver nanoparticle against bacteria such as E. coli, S. aureus, and dermatophytes like T. rubrum and T. tonsurans was determined. Thus, this study suggests that the Streptomyces sp. JF741876 can produce silver ions that can be used as an antimicrobial substance.


Sign in / Sign up

Export Citation Format

Share Document