Study of Wireless Torque Measurement System Based on CC2500

2011 ◽  
Vol 383-390 ◽  
pp. 5300-5303
Author(s):  
Wei Liu ◽  
Xiao Jie Song ◽  
Wen Gang Chen

It’s very difficult to get high precision measuring result using contact torquemeter because of very low signal-to-noise ratio. To overcome this defect, a wireless torque measuring system is designed based on CC2500. This system uses strain gauge torque sensor to measure the surface principal stress of the transmission shaft, and get the maximum shearing stress, and then the torque that the transmission shaft bears. The weak output signal of torque sensor is magnified by the instrumentation amplifier AD623, and sent to the analog-to-digital convertor. These digital data are transmited to the portable receiving terminal by the wireless transceiver chip CC2500. The dynamic wireless torque measurement is realized by this system.

2012 ◽  
Vol 433-440 ◽  
pp. 2619-2622
Author(s):  
Wei Liu ◽  
Xiao Jie Song ◽  
Wen Gang Chen

It’s very difficult to get high precision measuring result using contact torquemeter because of very low signal-to-noise ratio. To overcome this defect, a wireless torque measuring system is designed based on CC2500. This system uses strain gauge torque sensor to measure the surface principal stress of the transmission shaft, and get the maximum shearing stress, and then the torque that the transmission shaft bears. The weak output signal of torque sensor is magnified by the instrumentation amplifier AD623, and sent to the analog-to-digital convertor. These digital data are transmited to the portable receiving terminal by the wireless transceiver chip CC2500. The dynamic wireless torque measurement is realized by this system.


2012 ◽  
Vol 468-471 ◽  
pp. 1551-1554
Author(s):  
Rui Xie ◽  
Tie Hua Ma ◽  
Hong Jin ◽  
Dong Xing Pei

Torque measurement of transmission shaft has problems such as signal transmission, limited installation space and signal disturbance. In this paper proposes an embedded capacitive grid torque sensor. Through a special installation the output of capacitive grid sensor is proportional to twist angle, then torque can be calculated. The two electrodes of capacitive grid sensor can be embedded into the bearing and shaft respectively that reduces installation space, to improve the testability of transmission shaft. Experiments show that capacitive grid sensor performs high reliability and is able to be used in the case of strict environmental requirements in long time.


2021 ◽  
Vol 21 (1) ◽  
pp. 1-20
Author(s):  
A. K. Singh ◽  
S. Thakur ◽  
Alireza Jolfaei ◽  
Gautam Srivastava ◽  
MD. Elhoseny ◽  
...  

Recently, due to the increase in popularity of the Internet, the problem of digital data security over the Internet is increasing at a phenomenal rate. Watermarking is used for various notable applications to secure digital data from unauthorized individuals. To achieve this, in this article, we propose a joint encryption then-compression based watermarking technique for digital document security. This technique offers a tool for confidentiality, copyright protection, and strong compression performance of the system. The proposed method involves three major steps as follows: (1) embedding of multiple watermarks through non-sub-sampled contourlet transform, redundant discrete wavelet transform, and singular value decomposition; (2) encryption and compression via SHA-256 and Lempel Ziv Welch (LZW), respectively; and (3) extraction/recovery of multiple watermarks from the possibly distorted cover image. The performance estimations are carried out on various images at different attacks, and the efficiency of the system is determined in terms of peak signal-to-noise ratio (PSNR) and normalized correlation (NC), structural similarity index measure (SSIM), number of changing pixel rate (NPCR), unified averaged changed intensity (UACI), and compression ratio (CR). Furthermore, the comparative analysis of the proposed system with similar schemes indicates its superiority to them.


2012 ◽  
Vol 588-589 ◽  
pp. 1103-1107
Author(s):  
Yu Hai Gu ◽  
Qiu Shi Han ◽  
Xiao Li Xu ◽  
Hai Tao Zhang

In order to improve accuracy of measuring motor speed in precision motor control systems, a method of precise measurement of speed with CPLD is proposed, which measures the truncated parts of the measured pulse on the basis of measuring raster count pulse within the equal period, and takes them as compensation, thus improving accuracy of measuring the raster pulse. In this paper, a speed measuring formula is given. Measuring system is provided with parallel and serial communication interfaces for output of measurement results.


2014 ◽  
Vol 615 ◽  
pp. 57-62 ◽  
Author(s):  
Raquel Acero Cacho ◽  
Jose Antonio Albajez ◽  
José Antonio Yagüe-Fabra ◽  
Marta Torralba ◽  
Margarita Valenzuela ◽  
...  

The nanotechnology field has been developing strongly in recent years and ultra-precision measuring systems are nowadays required. A new two-dimensional moving platform with 50x50 mm range of travel, nanometer resolution and sub micrometer accuracy is being designed by the authors in order to be integrated with an Atomic Force Microscope (AFM). In this work the definition, design and experimental characterization of a homing sensor system for this 2D moving platform is presented. The homing sensor system will allow the generation of an absolute 2D reference for the platform (X-Y axis and θz rotation), defining an initial cero for the measuring system, which is based on laser encoders.


2017 ◽  
Vol 107 (09) ◽  
pp. 590-593
Author(s):  
T. Schneider ◽  
J. Wortmann ◽  
B. Eilert ◽  
M. Stonis ◽  
L. Prof. Overmeyer

Das Erfassen von Drehmomenten durch Sensoren sowie das Erzeugen von Drehmomenten stellen eine wichtige Basis für viele Industriezweige dar. Im Rahmen eines Forschungsprojektes wurde ein optisches, berührungsloses Messverfahren zur absoluten Drehwinkel- und Drehmomentmessung entwickelt. Zum Vergleich mit dem aktuellen Stand der Technik wurde ein Versuchsstand aufgebaut sowie ein Referenzdrehmomentsensor eingesetzt. Die Ergebnisse dieser Validierung werden in diesem Fachaufsatz vorgestellt.   The measurement of torque via sensors as well as the generation of torque are the basis of many industrial sectors. Within a research project an optical and non-contact measurement method to detect the absolute rotation angle and torque was developed. For comparison with the current state of the art torque sensors a test stand was built and compared to a reference torque sensor. The results of this validation are presented in the present paper.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Kyungshik Lee ◽  
Chongdu Cho

The feasibility of a noncontact sensor is investigated. This type of sensor can potentially be used for torque measurement in a speed-variable power transmission system. Torque can be read by examining the phase difference between two induction signals from respective magnetic sensors that detect the magnetic field intensity of permanent magnets mounted on the surface of a shaft in rotation. A real-time measuring algorithm that includes filtering and calibration is adopted to measure the torque magnitude. It is shown that this new torque sensor can perform well under rotation speeds ranging from 300 rpm to 500 rpm. As an interim report rather than a complete development, this work demonstrates the feasibility of noncontact torque measurement by monitoring a magnetic field. The result shows an error of less than 2% within the full test range, which is a sufficient competitive performance for commercial sensors. The price is very low compared to competitors in the marketplace, and the device does not require special handling of the shaft of the surface.


2018 ◽  
Vol 17 (1) ◽  
pp. 39
Author(s):  
Milan Dinčić ◽  
Dragan Denić ◽  
Zoran Perić

The aim of this paper is to design, analyze and compare four different systems for ADC (analog-to-digital conversion) of vibration signals. Measurement of vibration signals is of particular importance in many areas, such as predictive maintenance or structural health monitoring. Wireless systems for vibration measurements becomes very topical, due to much easier and cheaper installation compared to wired systems. Due to the lack of transmission bandwidth and energy in wireless measurement systems, the amount of digital data being sent has to be reduced; hence, we have to apply ADC systems that can achieve the required digital signal quality, reducing the bit-rate. Four ADC systems are analyzed, for possible application in wireless measurement systems: PCM (pulse code modulation) based on uniform quantization; DPCM (differential PCM) to exploit high correlation of vibration signals; two adaptive ADC systems to cope with significant variations of characteristics of vibration signals in time - APCM (adaptive PCM) with adaptation on variance and ADPCM (adaptive DPCM), with double adaptation (both on variance and correlation). These ADC models are designed and optimized specifically for vibration signals, based on the analysis of 20 vibration signals from a referent database. An experiment is done, applying designed ADC systems for digitalization of vibration signals. APCM, DPCM and ADPCM systems allow significant bit-rate reduction compared to the PCM system, but with the increasing of complexity, hence the compromise between the bit-rate reduction and complexity is needed.


2011 ◽  
Vol 19 (3) ◽  
pp. 189
Author(s):  
Karsten Rodenacker ◽  
Klaus Hahn ◽  
Gerhard Winkler ◽  
Dorothea P Auer

Spatio-temporal digital data from fMRI (functional Magnetic Resonance Imaging) are used to analyse and to model brain activation. To map brain functions, a well-defined sensory activation is offered to a test person and the hemodynamic response to neuronal activity is studied. This so-called BOLD effect in fMRI is typically small and characterised by a very low signal to noise ratio. Hence the activation is repeated and the three dimensional signal (multi-slice 2D) is gathered during relatively long time ranges (3-5 min). From the noisy and distorted spatio-temporal signal the expected response has to be filtered out. Presented methods of spatio-temporal signal processing base on non-linear concepts of data reconstruction and filters of mathematical morphology (e.g. alternating sequential morphological filters). Filters applied are compared by classifications of activations.


Sign in / Sign up

Export Citation Format

Share Document