Hot-State Numerical Simulation Study on Top-Blown Bath in ISA Furnace

2011 ◽  
Vol 383-390 ◽  
pp. 7406-7412 ◽  
Author(s):  
Shi Bo Wang ◽  
Hua Wang ◽  
Jian Xin Xu ◽  
Dao Fei Zhu ◽  
Hui Sun ◽  
...  

The 3D numerical models of a single free falling bubble hitting water surface and multi bubbles floating upward and fusing have been achieved by considering the influences of surface tension and wall functions in theoretical framework of VOF. On that basis, the 3D hot-state numerical model for simulating top-blown bath in ISA furnace is presented. The influences of the injection flow rate and the depth of immersion on mixing behavior and temperature distribution are discussed. The results of this paper provide the reference of theory calculation of optimizing operation of ISA furnace.

2018 ◽  
Vol 22 (1 Part B) ◽  
pp. 641-649
Author(s):  
Simon Sedmak ◽  
Zorana Golubovic ◽  
Alin Murariu ◽  
Aleksandar Sedmak

The aim of this paper is to present the behaviour of specimens made of polyethylene material PE 80, subjected to tensile load until failure. Measurements of the temperature distribution have been done using the infrared thermography during specimens loading. Finite element analysis was performed in ABAQUS software, where numerical models were made based on the thermograms and force-dis-placement diagrams obtained from these experiments. Afterwards, results from the simulation were compared with the experimental results and it was deter-mined in which way the model can be optimized so that these results comply at an acceptable level. Numerical model has shown that the highest values of plastic strain were located near the notch. Value of this plastic strain is several times greater than the values in the remaining parts of the specimen. The numerical analysis also determined that defining the load in displacement form was a much better solution than defining it using the force, since the results have shown much better compliance, and the calculation time was much shorter in this case.


Author(s):  
K. T. Tokuyasu

During the past investigations of immunoferritin localization of intracellular antigens in ultrathin frozen sections, we found that the degree of negative staining required to delineate u1trastructural details was often too dense for the recognition of ferritin particles. The quality of positive staining of ultrathin frozen sections, on the other hand, has generally been far inferior to that attainable in conventional plastic embedded sections, particularly in the definition of membranes. As we discussed before, a main cause of this difficulty seemed to be the vulnerability of frozen sections to the damaging effects of air-water surface tension at the time of drying of the sections.Indeed, we found that the quality of positive staining is greatly improved when positively stained frozen sections are protected against the effects of surface tension by embedding them in thin layers of mechanically stable materials at the time of drying (unpublished).


Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4313
Author(s):  
Bronisław Jańczuk ◽  
Katarzyna Szymczyk ◽  
Anna Zdziennicka

Measurements were made of the surface tension of the aqueous solutions of p-(1,1,3,3-tetramethylbutyl) phenoxypoly(ethylene glycols) having 10 oxyethylene groups in the molecule (Triton X-100, TX100) and cetyltrimethylammonium bromide (CTAB) with Zonyl FSN-100 (FC6EO14, FC1) as well as with Zonyl FSO-100 (FC5EO10, FC2) ternary mixtures. The obtained results were compared to those provided by the Fainerman and Miller equation and to the values of the solution surface tension calculated, based on the contribution of a particular surfactant in the mixture to the reduction of water surface tension. The changes of the aqueous solution ternary surfactants mixture surface tension at the constant concentration of TX100 and CTAB mixture at which the water surface tension was reduced to 60 and 50 mN/m as a function of fluorocarbon surfactant concentration, were considered with regard to the composition of the mixed monolayer at the water-air interface. Next, this composition was applied for the calculation of the concentration of the particular surfactants in the monolayer using the Frumkin equation. On the other hand, the Gibbs surface excess concentration was determined only for the fluorocarbon surfactants. The tendency of the particular surfactants to adsorb at the water-air interface was discussed, based on the Gibbs standard free energy of adsorption which was determined using different methods. This energy was also deduced, based on the surfactant tail surface tension and tail-water interface tension.


Author(s):  
Junnosuke Okajima ◽  
Atsuki Komiya ◽  
Shigenao Maruyama

The objective of this work is to experimentally and numerically evaluate small-scale cryosurgery using an ultrafine cryoprobe. The outer diameter (OD) of the cryoprobe was 550 μm. The cooling performance of the cryoprobe was tested with a freezing experiment using hydrogel at 37 °C. As a result of 1 min of cooling, the surface temperature of the cryoprobe reached −35 °C and the radius of the frozen region was 2 mm. To evaluate the temperature distribution, a numerical simulation was conducted. The temperature distribution in the frozen region and the heat transfer coefficient was discussed.


2014 ◽  
Vol 6 (2) ◽  
pp. 77-85
Author(s):  
Pratibha Joshi ◽  
Manoj Kumar

Many studies have been done previously on temperature distribution in inhomogeneous composite systems with perfect interface, having no discontinuities along it. In this paper we have determined steady state temperature distribution in two inhomogeneous composite systems with imperfect interface, having discontinuities in temperature and heat flux using decomposed immersed interface method and performed the numerical simulation on MATLAB.


2018 ◽  
Vol 44 ◽  
pp. 00194
Author(s):  
Krzysztof Wolski ◽  
Tomasz Tymiński ◽  
Grzegorz Chrobak

This paper presents results of numerical modelling of riverbed segment with riparian vegetation performed with use of CCHE2 software. Vegetation zones are places where dynamic of water flow increases. Therefore, there is a need of careful examination of hydraulic impact structure of such zones. Accurate research is necessary and should be performed with use of physical or numerical models, two or three dimensional. Paper presents distribution of velocity and area of water surface for two variants of vegetation deposition acquired in CCHE2D software and modelled for riverbed with distinctive riparian vegetation. Results point to significant (30–40%) increase of maximal velocities in riverbed with riparian vegetation, while directly near the vegetation there were zones with very low velocities. Local damming occurs before vegetal zone. Maximal shear stress in zones with increased velocity is significantly augmented compared to conditions with no vegetation, which can cause more intensive erosion in those zones


2004 ◽  
Vol 120 ◽  
pp. 697-704
Author(s):  
L. Depradeux ◽  
J.-F. Jullien

In this study, a parallel experimental and numerical simulation of phenomena that take place in the Heat Affected Zone during TIG welding on 316L stainless steel is presented. The aim of this study is to predict by numerical simulation residual stresses and distortions generated by the welding process. For the experiment, a very simple geometry with reduced dimensions is considered: the specimens are disks, made of 316L. The discs are heated in the central zone in order to reproduce thermo-mechanical cycles that take place in the HAZ during a TIG welding process. During and after thermal cycle, a large quantity of measurement is provided, and allows to compare the results of different numerical models used in the simulations. The comparative thermal and mechanical analysis allows to assess the general ability of the numerical models to describe the structural behavior. The importance of the heat input rate and material characteristics is also investigated.


Sign in / Sign up

Export Citation Format

Share Document