Investigation on the Transport Characteristics of Typical Biological Slender Particles in a Pilot-Scale Rotary Dryer

2011 ◽  
Vol 396-398 ◽  
pp. 315-321
Author(s):  
Wen Kui Zhu ◽  
Bin Li ◽  
Chuan Fang Yu ◽  
Liang Yuan Chen

The transport characteristics of cut tobacco as a typical biological wet slender particle were investigated in a pilot-scale rotary cylinder. Effect of solids and gas flow rate, moisture content of particles and rotating speed of cylinder was analyzed. The adaptability of the classical Friedman model for predicting average residence time of these type particles was also investigated. The result shows that the gas flow rate, moisture content of particles as well as rotating speed of cylinder have a significant influence on the axis transport velocity and forward step per cycle of cut tobacco in rotary cylinder. It’s difficult for Friedman model to accurately describe influence of gas flow rate and moisture content on transport of cut tobacco, which was associated with the particle characterize and influence of moisture content on the fluidity of particles.

Pharmaceutics ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 24 ◽  
Author(s):  
Georgia Kasten ◽  
Íris Duarte ◽  
Maria Paisana ◽  
Korbinian Löbmann ◽  
Thomas Rades ◽  
...  

The feasibility of upscaling the formulation of co-amorphous indomethacin-lysine from lab-scale to pilot-scale spray drying was investigated. A 22 full factorial design of experiments (DoE) was employed at lab scale. The atomization gas flow rate (Fatom, from 0.5 to 1.4 kg/h) and outlet temperature (Tout, from 55 to 75 °C) were chosen as the critical process parameters. The obtained amorphization, glass transition temperature, bulk density, yield, and particle size distribution were chosen as the critical quality attributes. In general, the model showed low Fatom and high Tout to be beneficial for the desired product characteristics (a co-amorphous formulation with a low bulk density, high yield, and small particle size). In addition, only a low Fatom and high Tout led to the desired complete co-amorphization, while a minor residual crystallinity was observed with the other combinations of Fatom and Tout. Finally, upscaling to a pilot scale spray dryer was carried out based on the DoE results; however, the drying gas flow rate and the feed flow rate were adjusted to account for the different drying chamber geometries. An increased likelihood to achieve complete amorphization, because of the extended drying chamber, and hence an increased residence time of the droplets in the drying gas, was found in the pilot scale, confirming the feasibility of upscaling spray drying as a production technique for co-amorphous systems.


2014 ◽  
Vol 881-883 ◽  
pp. 645-648
Author(s):  
Mei Jin ◽  
Li Yan Zhou ◽  
Ping Lu ◽  
Jin Huang Wang ◽  
Guo Xian Yu

The absorption performance of CO2 using MDEA-PZ-TETA ternary absorbent in a rotating packed bed was investigated. The effects of the concentration of the ternary absorbent, the absorbing liquid temperature, the rotating speed, the liquid flow rate and gas flow rate on the absorption performance of CO2 were discussed in detail. The experimental results showed that the optimum absorption condition was the absorbent concentration of 0.05 mol/L, the absorption temperature of 290 K, the rotating speed of 454 rpm and the ratio of gas to liquid of 1.2, which could provide a molar absorption saturated capacity of 1.3688 molCO2/molAm and a satisfying CO2 absorptivity of 93.18%.


2021 ◽  
Vol 19 (1) ◽  
pp. 288-298
Author(s):  
Lien Thi Tran ◽  
Tuan Minh Le ◽  
Tuan Minh Nguyen ◽  
Quoc Toan Tran ◽  
Xuan Duy Le ◽  
...  

Abstract This study explores the possibility of applying high-gravity rotating packed bed (HGRPB) in removing H2S and CO2 from biogas. Ca(OH)2 aqueous solution was used as the absorbent in this study. Different experimental conditions including solution pH, rotating speed (R S) of HGRPB, gas flow rate (Q G), and liquid flow rate (Q L) were investigated with respect to the removal efficiency (E) of H2S and CO2. The experimental and simulated results show that the optimal removal efficiency of H2S and CO2 using HGRPB achieved nearly the same as 99.38 and 99.56% for removal efficiency of H2S and 77.28 and 77.86% for removal efficiency of CO2, respectively. Such efficiencies corresponded with the following optimal conditions: a solution pH of 12.26, HGRPB reactor with the rotating speed of 1,200 rpm, the gas flow rate of 2.46 (L/min), and the liquid flow rate of 0.134 (L/min).


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Yuexia Chen ◽  
Xuexi Chen ◽  
Jiang Xu ◽  
Tingxiang Chu

Although there are many reports about the influence of moisture in the process of gas extraction, studies about the influence of moisture on gas flow, permeability, and coal deformation by experimental system analysis are lacking. Physical simulations of gas depressurization extraction using triaxial servo-controlled seepage equipment for hot-fluid-solid coupling were conducted. The gas flow rate, permeability, and strain were analysed during gas depressurization extraction. The relationship between gas flow rate and gas pressure was a quadratic polynomial. Permeability and strain changed continuously with the decrease of gas pressure and interacted with each other during gas depressurization extraction. In the initial stage, the effective permeability decreased. With the continuous decrease of gas pressure, the permeability gradually recovered. When the gas pressure dropped to about 0.6 MPa, the permeability increased rapidly and the corresponding volumetric strain increased gradually. With the increase of moisture content, the relationship between gas flow rate and gas pressure became less significant. The experiments showed that the higher the moisture content, the lower the effective permeability and the larger the volumetric strain.


2013 ◽  
Vol 838-841 ◽  
pp. 1909-1912
Author(s):  
Chun Bao Ma

Part of the gas fields utilize eddy current instruments to drainage and gas recovery currently, while the mechanism of drainage and gas recovery is not clear. This article conducts drainage and gas recovery simulating caculation, analyses the impact of gas flow rate, the moisture content of bottomhole and eddy current tool structure of its drainage effect, basing on the theory of gas-liquid two-phase flow. The results show that: the gas flow rate, moisture content and the normal section shape of eddy current tool spiral piece are the main factors that affect the eddy current tools draining. As follows: the larger the gas flowing rate, the better the tool draining effect; when the bottomhole moisture content is less than 10%, the draining effect is not obvious; but when the bottomhole moisture content is greater than 10%, with higher the moisture content, the draining effect is more obvious; the normal section shape of spiral piece is better to be rectangular rather than trapezoidal; the direction of rotation of the spiral piece (left and right hand) has little effect on draining.


Author(s):  
B.S. Soroka ◽  
V.V. Horupa

Natural gas NG consumption in industry and energy of Ukraine, in recent years falls down as a result of the crisis in the country’s economy, to a certain extent due to the introduction of renewable energy sources along with alternative technologies, while in the utility sector the consumption of fuel gas flow rate enhancing because of an increase the number of consumers. The natural gas is mostly using by domestic purpose for heating of premises and for cooking. These items of the gas utilization in Ukraine are already exceeding the NG consumption in industry. Cooking is proceeding directly in the living quarters, those usually do not meet the requirements of the Ukrainian norms DBN for the ventilation procedures. NG use in household gas stoves is of great importance from the standpoint of controlling the emissions of harmful components of combustion products along with maintenance the satisfactory energy efficiency characteristics of NG using. The main environment pollutants when burning the natural gas in gas stoves are including the nitrogen oxides NOx (to a greater extent — highly toxic NO2 component), carbon oxide CO, formaldehyde CH2O as well as hydrocarbons (unburned UHC and polyaromatic PAH). An overview of environmental documents to control CO and NOx emissions in comparison with the proper norms by USA, EU, Russian Federation, Australia and China, has been completed. The modern designs of the burners for gas stoves are considered along with defining the main characteristics: heat power, the natural gas flow rate, diameter of gas orifice, diameter and spacing the firing openings and other parameters. The modern physical and chemical principles of gas combustion by means of atmospheric ejection burners of gas cookers have been analyzed from the standpoints of combustion process stabilization and of ensuring the stability of flares. Among the factors of the firing process destabilization within the framework of analysis above mentioned, the following forms of unstable combustion/flame unstabilities have been considered: flashback, blow out or flame lifting, and the appearance of flame yellow tips. Bibl. 37, Fig. 11, Tab. 7.


1998 ◽  
Vol 63 (6) ◽  
pp. 881-898
Author(s):  
Otakar Trnka ◽  
Miloslav Hartman

Three simple computational techniques are proposed and employed to demonstrate the effect of fluctuating flow rate of feed on the behaviour and performance of an isothermal, continuous stirred tank reactor (CSTR). A fluidized bed reactor (FBR), in which a non-catalytic gas-solid reaction occurs, is also considered. The influence of amplitude and frequency of gas flow rate fluctuations on reactant concentrations at the exit of the CSTR is shown in four different situations.


Sign in / Sign up

Export Citation Format

Share Document