Optimal Design of Heating System for Annular Furnace

2011 ◽  
Vol 402 ◽  
pp. 403-406 ◽  
Author(s):  
Yin Mei Yuan ◽  
Chao Xiang Li

According to the present problems of annular furnace, using the furnace black box, the temperature distribution of billet in the heating process is measured. Based on the results, the existing heating system is found deficient. Therefore, make improvements to the heating system, and mainly increase the heat load. Heating process tracking test is carried out again. Achieve the desired outcome, such as temperature uniformity, better quality, shorten time,etc.

2021 ◽  
pp. 59-59
Author(s):  
Fumin Shang ◽  
Qingjing Yang ◽  
Shilong Fan ◽  
Chaoyue Liu ◽  
Jianhong Liu

Herein, a horizontal CPU cooler with a pulsating heat pipe (PHP) for cooling desktop computer was developed. In the experiment, an electric heating block was used to heat a copper plate to simulate the heating process of CPUs. The cooling system consists of a cooling fan and a pulsating heat pipe cooler. The influence of cooling wind speed and heat load on heat transfer performance, start-up performance, and temperature uniformity of the PHP cooler was analyzed by controlling variable method. The wind speed was set to be 0 m/s, 0.1 m/s, 0.3 m/s, 0.5 m/s and 0.7 m/s respectively. The contour plots were used to analyze the uniformity of temperature distribution due to cooler. The results show that the start-up of the PHP led to a decrease in temperature of CPUs. As the cooling wind speed increased, the start-up time of the php dropped, the start-up temperature dropped, and its stability was also improved. The operation at different cooling wind speeds also changed the start-up mode of the PHP. The start-up performance was best at cooling wind speed of 0.3 m/s. The contour plot for temperature showed that the temperature distribution of the PHP cooler became more uniform with increased cooling wind speeds. There was excellent temperature uniformity at the cooling wind speeds of 0.3 m/s and 0.7 m/s. When the cooling wind speed was 0.7 m/s, the minimum average thermal resistance was 0.51 K/W.


2018 ◽  
Vol 10 (8) ◽  
pp. 168781401878950 ◽  
Author(s):  
Jiquan Li ◽  
Taidong Li ◽  
Xiang Peng ◽  
Feng Liu ◽  
Hangchao Zhou ◽  
...  

To improve the heating efficiency and cavity surface temperature uniformity, an optimal design method was developed for the heating system in electrical rapid heat cycle molding mold. First, an electrical rapid heat cycle molding mold was simplified as a single heating cell unit for thermal response analysis based on conformal design theory. Second, a response surface using back propagation neural network was constructed on the ground of initial finite element experiments. Then, a non-dominated sorting genetic algorithm-II combined with the polynomial back propagation neural network model was proposed to capture the Pareto-optimal solutions. Subsequently, the technique for order preference by similarity to ideal solution based on entropy-based weight was adopted as a multi-attribute decision-making method to choose the trade-off optimal design point from the Pareto-optimal set. To gain the optimal design of heating system, the optimized heating cell unit for electrical rapid heat cycle molding mold was calculated and finally mapped into the entire mold. Cavity surface temperature uniformity increased by 17.1%, and heating efficiency increased by 26%. The results show that the temperature distribution uniformity on the mold cavity surface was obviously improved and using this optimization strategy ensured high heating efficiency.


2020 ◽  
Vol 863 ◽  
pp. 97-102
Author(s):  
Huynh Duc Thuan ◽  
Tran Anh Son ◽  
Pham Son Minh

In this paper, an induction heating system was applied to the heating stage in the injection molding process. Through simulation and experiment, the heating process was estimated by the temperature distribution and the heating rate. In the simulation, the mold temperature was increased from 30°C to 180°C in 9 s. Therefore, the heating rate was higher than 16°C/s, which represents a positive result in the field of mold heating. Additionally, the temperature distribution revealed that the higher temperature is concentrated on the gate area, while the outside of the mold cavity is at a lower temperature. The same parameters were applied to both the experiment and the simulation, and the results were in good agreement.


2021 ◽  
pp. 014459872110052
Author(s):  
Yuechao Liu ◽  
Dong Guo ◽  
Min Zhou ◽  
Shanshan Wu ◽  
Dongmei Li

One optimization method of hourly heat load calculation model for heat storage air-conditioning heating system in different climate zones was proposed. A building model is initially built in six different climate zones. Subsequently, the hourly heat load and steady-state design heat load in different climate zones were analyzed. Simultaneously, the hourly heat load additional coefficient of the air-conditioning system with different heating modes on a typical day was compared. It can be found that steady-state design heat load on a typical day is mostly between the peak load and average load of the air-conditioning heating system. Simultaneously, results indicate that the hourly heat load additional coefficient in each climate zone can be fitted to different exponential functions. When the heat storage capacity of building components was changed, the maximum increase of the hourly heat load additional coefficient of the air-conditioning system with intermittent heating was 5%. Thus, the research of the optimal design of hourly heat load calculation method provides a relative reference for performance improvement of the heat storage air-conditioning heating system.


1999 ◽  
Vol 73 (2) ◽  
pp. 131-139 ◽  
Author(s):  
S. de la Plaza ◽  
R.M. Benavente ◽  
J.L. Garcı́a ◽  
L.M. Navas ◽  
L. Luna ◽  
...  

Author(s):  
Hong-Seok Park ◽  
Xuan-Phuong Dang

This paper presents potential approaches that increase the energy efficiency of an in-line induction heating system for forging of an automotive crankshaft. Both heat loss reduction and optimization of process parameters are proposed scientifically in order to minimize the energy consumption and the temperature deviation in the workpiece. We applied the numerical multiobjective optimization method in conjunction with the design of experiment (DOE), mathematical approximation with metamodel, nondominated sorting genetic algorithm (GA), and engineering data mining. The results show that using the insulating covers reduces heat by an amount equivalent to 9% of the energy stored in the heated workpiece, and approximately 5.8% of the energy can be saved by process parameter optimization.


2018 ◽  
Vol 2018 ◽  
pp. 1-24 ◽  
Author(s):  
Zhijun Zhang ◽  
Tianyi Su ◽  
Shiwei Zhang

Aiming at improving the food quality during microwave process, this article mainly focused on the numerical simulation of shape effect, which was evaluated by microwave power absorption capability and temperature distribution uniformity in a single sample heated in a domestic microwave oven. This article only took the electromagnetic field and heat conduction in solid into consideration. The Maxwell equations were used to calculate the distribution of microwave electromagnetic field distribution in the microwave cavity and samples; then the electromagnetic energy was coupled as the heat source in the heat conduction process in samples. Quantitatively, the power absorption capability and temperature distribution uniformity were, respectively, described by power absorption efficiency (PAE) and the statistical variation of coefficient (COV). In addition, we defined the comprehensive evaluation coefficient (CEC) to describe the usability of a specific sample. In accordance with volume or the wave numbers and penetration numbers in the radial and axial directions of samples, they can be classified into different groups. And according to the PAE, COV, and CEC value and the specific need of microwave process, an optimal sample shape and orientation could be decided.


2020 ◽  
Vol 39 (1) ◽  
pp. 54-62
Author(s):  
Hua Chen ◽  
Junjiang Chen ◽  
Weijun Wang ◽  
Huan Lin

AbstractThe multimode resonant cavity is the most common cavity. The material often shows on selective heating performance during the heating process due to the effect of microwave heating having a closely relationship with the electromagnetism parameters. This paper is based on finite difference time domain method (FDTD) to establish the electromagnetic-thermal model. The electromagnetic sensitivity property parameters of sodium chloride including relative dielectric constant, loss angle tangent and water content of sodium chloride is studied during the heating and drying process. The heating rate and the electric field distribution of sodium chloride, at the different water content, were simulated with the electromagnetic characteristic parameters changing. The results show that with the electromagnetic sensitivity property parameters varying, the electric field strength, heating rate and steady-state temperature of the heating material will all have a variety in the cavity. Some measures are proposed to improve the heating efficiency and ensure the stability of the microwave heating system in the industrial application.


2019 ◽  
Vol 9 (1) ◽  
pp. 121-124
Author(s):  
Florin-Emilian Turcanu ◽  
Ana Diana Ancas ◽  
Mihai Profire ◽  
Marina Verdes ◽  
Marius Costel Balan

Abstract This paper evaluates a static heating system from a church. They are presented in almost every church. Temperature distribution in the church is done in 2d plane. The simulation is presented on a particular example, the Dormition of the Mother of God Church from Jassy, Romania. The heating system had been simulated in FLUENT and the consequences over the interior climate in the church are showed. An important issue is the impact of this system over the artwork, the church being rise in XVIII century.


Sign in / Sign up

Export Citation Format

Share Document