Automatic Recognition of Basal Cisterns on Brain CT

2011 ◽  
Vol 403-408 ◽  
pp. 5121-5125
Author(s):  
Ke Chun Huang ◽  
Fu Ren Xiao ◽  
Jau Min Wong ◽  
I Jen Chiang ◽  
Chun Chih Liao

Effacement of the basal cisterns (BC) and midline shift (MLS) are two most important features clinicians use to evaluate the severity of brain compression by various pathologies. Because of its complex shape, measuring the compression of the BC is not an easy task and its standardization has not been proposed until recently. Based on this standard method, we develop a method for automatic recognition of the BC on brain CT slices. Hypodense pixels of the brain area on each slice are found with a threshold derived from its own histogram. Hough transform is then applied to find the semicircular band containing largest number of hypodense pixels within the lower-central brain. This area was recognized as the normal or abnormal BC if it fits certain rules derived from human experts. Our system is tested on patient images. We found good inter-rater agreement between the results generated by our system and those evaluated by a board-certified neurosurgeon (kappa = 0.957).

2010 ◽  
Vol 40 (3) ◽  
pp. 331-339 ◽  
Author(s):  
Chun-Chih Liao ◽  
Furen Xiao ◽  
Jau-Min Wong ◽  
I-Jen Chiang

Author(s):  
Jair Leopoldo Raso

Abstract Introduction The precise identification of anatomical structures and lesions in the brain is the main objective of neuronavigation systems. Brain shift, displacement of the brain after opening the cisterns and draining cerebrospinal fluid, is one of the limitations of such systems. Objective To describe a simple method to avoid brain shift in craniotomies for subcortical lesions. Method We used the surgical technique hereby described in five patients with subcortical neoplasms. We performed the neuronavigation-guided craniotomies with the conventional technique. After opening the dura and exposing the cortical surface, we placed two or three arachnoid anchoring sutures to the dura mater, close to the edges of the exposed cortical surface. We placed these anchoring sutures under microscopy, using a 6–0 mononylon wire. With this technique, the cortex surface was kept close to the dura mater, minimizing its displacement during the approach to the subcortical lesion. In these five cases we operated, the cortical surface remained close to the dura, anchored by the arachnoid sutures. All the lesions were located with a good correlation between the handpiece tip inserted in the desired brain area and the display on the navigation system. Conclusion Arachnoid anchoring sutures to the dura mater on the edges of the cortex area exposed by craniotomy constitute a simple method to minimize brain displacement (brain-shift) in craniotomies for subcortical injuries, optimizing the use of the neuronavigation system.


2021 ◽  
Vol 6 (1) ◽  
pp. e000717
Author(s):  
Panu Teeratakulpisarn ◽  
Phati Angkasith ◽  
Thanakorn Wannakul ◽  
Parichat Tanmit ◽  
Supatcha Prasertcharoensuk ◽  
...  

BackgroundAlthough there are eight factors known to indicate a high risk of intracranial hemorrhage (ICH) in mild traumatic brain injury (TBI), identification of the strongest of these factors may optimize the utility of brain CT in clinical practice. This study aimed to evaluate the predictors of ICH based on baseline characteristics/mode of injury, indications for brain CT, and a combination of both to determine the strongest indicator.MethodsThis was a descriptive, retrospective, analytical study. The inclusion criteria were diagnosis of mild TBI, high risk of ICH, and having undergone a CT scan of the brain. The outcome of the study was any type of ICH. Stepwise logistic regression analysis was used to find the strongest predictors according to three models: (1) injury pattern and baseline characteristics, (2) indications for CT scan of the brain, and (3) a combination of models 1 and 2.ResultsThere were 100 patients determined to be at risk of ICH based on indications for CT of the brain in patients with acute head injury. Of these, 24 (24.00%) had ICH. Model 1 found that injury due to motor vehicle crash was a significant predictor of ICH, with an adjusted OR (95% CI) of 11.53 (3.05 to 43.58). Models 2 and 3 showed Glasgow Coma Scale (GCS) score of 13 to 14 after 2 hours of observation and open skull or base of skull fracture to be independent predictors, with adjusted OR (95% CI) of 11.77 (1.32 to 104.96) and 5.88 (1.08 to 31.99) according to model 2.DiscussionOpen skull or base of skull fracture and GCS score of 13 to 14 after 2 hours of observation were the two strongest predictors of ICH in mild TBI.Level of evidenceIII.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 884
Author(s):  
Natalia Yeste ◽  
Daniel Valent ◽  
Laura Arroyo ◽  
Marta Vázquez-Gómez ◽  
Consolación García-Contreras ◽  
...  

Supplementation of a mother’s diet with antioxidants, such as hydroxytyrosol (HTX), has been proposed to ameliorate the adverse phenotypes of fetuses at risk of intrauterine growth restriction. In the present study, sows were treated daily with or without 1.5 mg of HTX per kilogram of feed from day 35 of pregnancy (at 30% of total gestational period), and individuals were sampled at three different ages: 100-day-old fetuses and 1-month- and 6-month-old piglets. After euthanasia, the brain was removed and the hippocampus, amygdala, and prefrontal cortex were dissected. The profile of the catecholaminergic and serotoninergic neurotransmitters (NTs) was characterized and an immunohistochemical study of the hippocampus was performed. The results indicated that maternal supplementation with HTX during pregnancy affected the NT profile in a brain-area-dependant mode and it modified the process of neuron differentiation in the hippocampal CA1 and GD areas, indicating that cell differentiation occurred more rapidly in the HTX group. These effects were specific to the fetal period, concomitantly with HTX maternal supplementation, since no major differences remained between the control and treated groups in 1-month- and 6-month-old pigs.


2016 ◽  
Vol 74 (8) ◽  
pp. 632-637 ◽  
Author(s):  
Vernon Furtado da Silva ◽  
Mauricio Rocha Calomeni ◽  
Rodolfo Alkmim Moreira Nunes ◽  
Carlos Elias Pimentel ◽  
Gabriela Paes Martins ◽  
...  

ABSTRACT This study focused upon the functional capacity of mirror neurons in autistic children. 30 individuals, 10 carriers of the autistic syndrome (GCA), 10 with intellectual impairments (GDI), and 10 non-autistics (GCN) had registered eletroencephalogram from the brain area theoretically related to mirror neurons. Data collection procedure occurred prior to brain stimulation and after the stimulation session. During the second session, participants had to alternately process figures evoking neutral, happy, and/or sorrowful feelings. Results proved that, for all groups, the stimulation process in fact produced additional activation in the neural area under study. The level of activation was related to the format of emotional stimuli and the likelihood of boosting such stimuli. Since the increase of activation occurred in a model similar to the one observed for the control group, we may suggest that the difficulty people with autism have at expressing emotions is not due to nonexistence of mirror neurons.


2021 ◽  
pp. 074873042110458
Author(s):  
Carson V. Fulgham ◽  
Austin P. Dreyer ◽  
Anita Nasseri ◽  
Asia N. Miller ◽  
Jacob Love ◽  
...  

Many behaviors exhibit ~24-h oscillations under control of an endogenous circadian timing system that tracks time of day via a molecular circadian clock. In the fruit fly, Drosophila melanogaster, most circadian research has focused on the generation of locomotor activity rhythms, but a fundamental question is how the circadian clock orchestrates multiple distinct behavioral outputs. Here, we have investigated the cells and circuits mediating circadian control of feeding behavior. Using an array of genetic tools, we show that, as is the case for locomotor activity rhythms, the presence of feeding rhythms requires molecular clock function in the ventrolateral clock neurons of the central brain. We further demonstrate that the speed of molecular clock oscillations in these neurons dictates the free-running period length of feeding rhythms. In contrast to the effects observed with central clock cell manipulations, we show that genetic abrogation of the molecular clock in the fat body, a peripheral metabolic tissue, is without effect on feeding behavior. Interestingly, we find that molecular clocks in the brain and fat body of control flies gradually grow out of phase with one another under free-running conditions, likely due to a long endogenous period of the fat body clock. Under these conditions, the period of feeding rhythms tracks with molecular oscillations in central brain clock cells, consistent with a primary role of the brain clock in dictating the timing of feeding behavior. Finally, despite a lack of effect of fat body selective manipulations, we find that flies with simultaneous disruption of molecular clocks in multiple peripheral tissues (but with intact central clocks) exhibit decreased feeding rhythm strength and reduced overall food intake. We conclude that both central and peripheral clocks contribute to the regulation of feeding rhythms, with a particularly dominant, pacemaker role for specific populations of central brain clock cells.


1889 ◽  
Vol 35 (149) ◽  
pp. 23-44 ◽  
Author(s):  
Francis Warner

(1) Movement in mau has long been a subject of profitable study. Visible movement in the body is produced by muscular contraction following upon stimulation of the muscles by efferent currents passing from the central nerve-system. Modern physiological experiments have demonstrated that when a special brain-area discharges nerve-currents, these are followed by certain visible movements or contraction of certain muscles corresponding. So exact are such reactions, as obtained by experiment upon the brain-areas, that movements similar to those produced by experimental excitation of a certain brain-area may be taken as evidence of action in that area, or as commencing in discharge from that area (see Reinforcement of Movements, 35; Compound Series of Movements, 34).


2003 ◽  
Vol 7 (3) ◽  
pp. 14-16
Author(s):  
S. L. Benade ◽  
A. T. Scher

The decision as to whether to perform a CT examination of the brain in patients with a Glasgow coma score of 15 after injury is often difficult, given the limited CT scanning facilities available in state hospitals. A retrospective evaluation of 100 consecutive head-injury patients presenting with a Glasgow coma score of 15 at Tygerberg Hospital was therefore carried out. In a surprisingly high number of patients (50%) abnormal findings due to the injury were detected. Analysis of the clinical history parameters did not demonstrate a significant association with abnormal CT findings. It is therefore concluded that brain CT examination in patients with a Glasgow coma score of 15 is justified and that the Glasgow coma scale is a poor predictor of intracranial injury.


Author(s):  
S.D. Rykunov ◽  
E.D. Rykunova ◽  
A.I. Boyko ◽  
M.N. Ustinin

A new method of analyzing magnetic encephalography data, the virtual electrode method, was developed. According to magnetic encephalography data, a functional tomogram is constructed — the spatial distribution of field sources on a discrete grid. A functional tomogram displays on the head space the information contained in the multichannel time series of an encephalogram. This is achieved by solving the inverse problem for all elementary oscillations extracted using the Fourier transform. Each oscillation frequency corresponds to a three-dimensional grid node in which the source is located. The user sets the location, size and shape of the brain area for a detailed study of the frequency structure of a functional tomogram - a virtual electrode. The set of oscillations that fall into a given region represents the partial spectrum of this region. The time series of the encephalogram measured by the virtual electrode is restored using this spectrum. The method was applied to the analysis of magnetic encephalography data in two variations - a virtual electrode of a large radius and a point virtual electrode.


Sign in / Sign up

Export Citation Format

Share Document