On the Onset of Dynamic Recrystallization in Steels

2011 ◽  
Vol 409 ◽  
pp. 431-436 ◽  
Author(s):  
Gonzalo Varela-Castro ◽  
Jose María Cabrera ◽  
J.M. Prado

The knowledge of the flow behavior of metallic alloys subjected to hot forming operations is of particular interest for designers and engineers in the practice of industrial forming processes simulations (i.e. rolling mill). Nowadays dynamic recrystallization (DRX) is recognized as one of the most relevant and meaningful mechanisms available for the control of microstructure. This mechanism occurs during hot forming operations over a wide range of metals and alloys and it is known to be as a powerful tool which can be used to the control of the microstructure and properties of alloys. Therefore is important to know, particularly in low stacking fault energy (SFE) materials, the precise time for which DRX is available to act. At constant strain rate such time is defined by a critical strain, εc. Unfortunately this critical value is not directly measurable on the flow curve; as a result different methods have been developed to derive it. Focused on steels, in the present work the state of art on the critical strain for the initiation of DRX is summarized and a review of the different methods and expressions for determining εc is included. The collected data is suitable to feeding constitutive models.

Metals ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 135 ◽  
Author(s):  
Gonzalo Varela-Castro ◽  
José-María Cabrera ◽  
José-Manuel Prado

The knowledge of the flow behavior of metallic alloys subjected to hot forming operations has particular interest for metallurgists in the practice of industrial forming processes involving high temperatures (e.g., rolling, forging, and/or extrusion operations). Dynamic recrystallisation (DRX) occurs during high temperature forming over a wide range of metals and alloys, and it is known to be a powerful tool that can be used to control the microstructure and mechanical properties. Therefore, it is important to know, particularly in low stacking fault energy materials, the precise time at which DRX is available to act. Under a constant strain rate condition, and for a given temperature, such a time is defined as a critical strain (εc). Unfortunately, this critical value is not always directly measurable on the flow curve; as a result, different methods have been developed to derive it. Focused on carbon and microalloyed steels subjected to laboratory-scale testing, in the present work, the state of art on the critical strain for the initiation of DRX is reviewed and summarized. A review of the different methods and expressions for assessing the critical strain is also included. The collected data are well suited to feeding constitutive models and computational codes.


2019 ◽  
Vol 38 (2019) ◽  
pp. 699-714 ◽  
Author(s):  
Bing Zhang ◽  
Xiaodi Shang ◽  
Su Yao ◽  
Qiuyu Wang ◽  
Zhijuan Zhang ◽  
...  

AbstractThe true strain data and true stress data are obtained from the isothermal compression tests under a wide range of strain rates (0.1–20 s−1) and temperatures (933–1,133 K) over the Gleeble-3500 thermomechanical simulator. The data are employed to generate the constitutive equations according to four constitutive models, respectively, the strain-compensated Arrhenius-type model, the modified Zerilli–Armstrong (ZA) model, the modified Johnson–Cook (JC) model and the JC model. In the meanwhile, a comparative research was made over the capacities of these four models and hence to represent the elevated temperature flow behavior of TA2. Besides, a comparison of the accuracy of the predictions of average absolute relative error, correlation coefficient (R) and the deformation behavior was made to test the sustainability level of these four models. It is shown from these results that the JC model is not suitable for the description of flow behavior of TA2 alloy in α+β phase domain, while the predicted values of modified JC model, modified ZA model and the strain-compensated Arrhenius-type model could be consistent well with the experimental values except under some deformation conditions. Moreover, the strain-compensated Arrhenius-type model can be also used to track the deformation behavior more precisely in comparison with other models.


2014 ◽  
Vol 941-944 ◽  
pp. 1488-1491
Author(s):  
Zhi Ping Guan ◽  
Hong Jie Jia ◽  
Ming Wen Ren ◽  
Dong Lai Wei

In order to precisely describe superplastic flow behavior of H62 alloy, a empirical constitutive equation was established based on the experimental data, which were obtained from the constant strain rate tensions (2.0×10-4~4.0×10-2s-1) at 720 °C. Through verification of the constitutive equation with the experimental data in constant strain rate tensions and constant velocity tensions, it was indicated that the empirical constitutive equation has high accuracy and comprehensive reliability in a wide range of strain rates (2.0×10-4~2.0×10-2s-1) and strains (0~1.8). In addition, the empirical constitutive equation has a good ability to model the superplastic flow behavior of H62 alloy at 720 °C under other deformation conditions besides constant strain rate tension.


Author(s):  
Elahe Mirabi ◽  
Nasrollahi Nazanin

<p>Designing urban facades is considered as a major factor influencing issues<br />such as natural ventilation of buildings and urban areas, radiations in the<br />urban canyon for designing low-energy buildings, cooling demand for<br />buildings in urban area, and thermal comfort in urban streets. However, so<br />far, most studies on urban topics have been focused on flat facades<br />without details of urban layouts. Hence, the effect of urban facades with<br />details such as the balcony and corbelling on thermal comfort conditions<br />and air flow behavior are discussed in this literature review. <strong>Aim</strong>: This<br />study was carried out to investigate the effective factors of urban facades,<br />including the effects of building configuration, geometry and urban<br />canyon’s orientation. <strong>Methodology and Results</strong>: According to the results,<br />the air flow behavior is affected by a wide range of factors such as wind<br />conditions, urban geometry and wind direction. Urban façade geometry<br />can change outdoor air flow pattern, thermal comfort and solar access.<br /><strong>Conclusion, significance and impact study</strong>: In particular, the geometry of<br />the facade, such as indentation and protrusion, has a significant effect on<br />the air flow and thermal behavior in urban facades and can enhance<br />outdoor comfort conditions. Also, Alternation in façade geometry can<br />affect pedestrians' comfort and buildings energy demands.</p>


2016 ◽  
Vol 35 (3) ◽  
pp. 327-336 ◽  
Author(s):  
Sendong Gu ◽  
Liwen Zhang ◽  
Chi Zhang ◽  
Wenfei Shen

AbstractThe hot deformation characteristics of nickel-based alloy Nimonic 80A were investigated by isothermal compression tests conducted in the temperature range of 1,000–1,200°C and the strain rate range of 0.01—5 s–1on a Gleeble-1500 thermomechanical simulator. In order to establish the constitutive models for dynamic recrystallization (DRX) behavior and flow stress of Nimonic 80A, the material constantsα,nand DRX activation energyQin the constitutive models were calculated by the regression analysis of the experimental data. The dependences of initial stress, saturation stress, steady-state stress, dynamic recovery (DRV) parameter, peak strain, critical strain and DRX grain size on deformation parameters were obtained. Then, the Avrami equation including the critical strain for DRX and the peak strain as a function of strain was established to describe the DRX volume fraction. Finally, the constitutive model for flow stress of Nimonic 80A was developed in DRV region and DRX region, respectively. The flow stress values predicted by the constitutive model are in good agreement with the experimental ones, which indicates that the constitutive model can give an accurate estimate for the flow stress of Nimonic 80A under the deformation conditions.


2004 ◽  
Vol 449-452 ◽  
pp. 577-580
Author(s):  
Young Sang Na ◽  
Young Mok Rhyim ◽  
J.Y. Lee ◽  
Jae Ho Lee

In order to quantitatively analyze the critical strain for the initiation of dynamic recrystallization in Ni-Fe-based Alloy 718, a series of uniaxial compression tests was conducted in the temperature range 927°C - 1066°C and the strain rate range 5 x 10-4s-1- 5 s-1with varying initial grain size. The critical strains were graphically determined based on one parameter approach and microscopically confirmed. The effect of γ'' (matrix-hardening phase) and δ (grain boundary phase)on the critical strain was simply discussed. The constitutive model for the critical strain of Alloy 718 was constructed using the experimental data obtained from the higher strain rate and the temperature range between 940°C and 1040°C.


Author(s):  
Ehsan Roohi ◽  
Masoud Darbandi ◽  
Vahid Mirjalili

The current research uses an unstructured direct simulation Monte Carlo (DSMC) method to numerically investigate supersonic and subsonic flow behavior in micro convergent–divergent nozzle over a wide range of rarefied regimes. The current unstructured DSMC solver has been suitably modified via using uniform distribution of particles, employing proper subcell geometry, and benefiting from an advanced molecular tracking algorithm. Using this solver, we study the effects of back pressure, gas/surface interactions (diffuse/specular reflections), and Knudsen number, on the flow field in micronozzles. We show that high viscous force manifesting in boundary layers prevents supersonic flow formation in the divergent section of nozzles as soon as the Knudsen number increases above a moderate magnitude. In order to accurately simulate subsonic flow at the nozzle outlet, it is necessary to add a buffer zone to the end of nozzle. If we apply the back pressure at the outlet, boundary layer separation is observed and a region of backward flow appears inside the boundary layer while the core region of inviscid flow experiences multiple shock-expansion waves. We also show that the wall boundary layer prevents forming shocks in the divergent part. Alternatively, Mach cores appear at the nozzle center followed by bow shocks and an expansion region.


2002 ◽  
Vol 124 (2) ◽  
pp. 379-388 ◽  
Author(s):  
Jin Cheng ◽  
Y. Lawrence Yao

Laser forming of steel is a hot forming process with high heating and cooling rate, during which strain hardening, dynamic recrystallization, and phase transformation take place. Numerical models considering strain rate and temperature effects only usually give unsatisfactory results when applied to multiscan laser forming operations. This is mainly due to the inadequate constitutive models employed to describe the hot flow behavior. In this work, this limitation is overcome by considering the effects of microstructure change on the flow stress in laser forming processes of low carbon steel. The incorporation of such flow stress models with thermal mechanical FEM simulation increases numerical model accuracy in predicting geometry change and mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document