Yttria-Doped Zirconia-Hydroxyapatite Composite Coating on Cp-Ti Implants by Biomimetic Method

2012 ◽  
Vol 445 ◽  
pp. 691-696 ◽  
Author(s):  
Aysu Karakas ◽  
A. Binnaz Hazar Yoruc ◽  
Duygu Ceylan Erdogan ◽  
Oktay Elkoca

Titanium (Ti) and Ti-alloys are often used in dental and orthopedic applications because of their good mechanical properties and biocompatibility. The advantages of Ti and Ti-alloys are its superior corrosion resistance, high fatigue strength and low elastic modulus which reduce stress shielding. Morover biocompatibility of them can be improved coating with bioceramics such as hydroxyapatite (HA) or other ceramic composites. The hydroxyapatite [Ca10(PO4)6(OH)2, H is frequently used as a coating material on the surfaces of Ti-based medical implants to improve the bone fixation and thus the lifetime of the implant is increased. However, the main weakness of HA lies on its poor mechanical strength that makes it unsuitable for load-bearing applications. An attractive way to produce the tougher HA is to use composite powders such as Yttria-Doped Zirconia-Hydroxyapatite (YSZ-HA) consisting of 8 mol% yttria-stabilized tetragonal zirconia (YSZ) so that the apatite phase increases the biocompatibility and zirconia (ZrO2) phase improves the strength. Y2O3addition into zirconia can stabilize the tetragonal phase at room temperature (YSZ) and the tetragonal phase plays a major role to increase the fracture toughness. In the present study yttria-dopped zirconia powders by using ZrO(NO3)2.xH2O and Y(NO3)3.6H2O were produced to synthesize HA-YSZ composites. In accordance with this purpose, at the first step, Ca (NO3)2.4H2O, (NH4)2HPO4and YSZ powders were dissolved in simulated body fluids (SBF) to obtain sol. The gelatin solutions with different concentration were added into sol to provide the gelation. Then the surfaces of Ti implants were soaked in this solution. The coating rate of Ti samples was arranged as 14 cm/s and coated implants were sintered at 900°C. Structural analysis of coated powders was obtained by using XRD. Morphological examinations and coating thickness were investigated by SEM. After the sol-gel solution was dried at 80°C, dried-powder was sintered at 900°C. Sintered powders were analyzed by FT-IR to determine any gelatin residue.

2010 ◽  
Vol 65 ◽  
pp. 11-15
Author(s):  
Ya. Dyatlova ◽  
S.S. Ordanyan ◽  
Andrey Osmakov ◽  
V. Pesin ◽  
V. Rumyantsev

The paper demonstrates the possibility to control the degree of tetragonal zirconia stabilization, microstructure and physical and mechanical behavior of Al2O3 -ZrO2(Y2O3) ceramic composite. Control is exerted via the process variables during deposition synthesis of nanosized composite powders from hydroxide salts, and their subsequent heat treatment and consolidation. Morphology features of nanosized powder systems and microstructures of the consolidated nanostructured materials were characterized by BET surface are measurements, scanning electron microscopy (both standard and HR), and large-angle X-ray diffraction. Correlations are established between microstructure parameters, physical and mechanical behavior of composite ceramics and a degree of stabilization of tetragonal ZrO2.


1997 ◽  
Vol 12 (10) ◽  
pp. 2594-2601 ◽  
Author(s):  
R. Caruso ◽  
E. Benavídez ◽  
O. de Sanctis ◽  
M. C. Caracoche ◽  
P. C. Rivas ◽  
...  

Powders and coatings of zirconia doped with 2.5 mole% yttria have been produced via the sol-gel route. The phase structure and subsequent thermal evolution in heating and cooling cycles have been investigated using mainly perturbed angular correlations spectroscopy. Thermal analyses and XRD as a function of temperature have also been performed to obtain complementary information. Upon heating, the amorphous gels crystallized into the tetragonal structure and showed the same hyperfine pattern and thermal behavior as observed in tetragonal zirconia obtained by the ceramic route: the two configurations of vacancies around zirconium ions denoted as t1 and t2 forms and their mutual t1 → t2 transformation. While the powder sample exhibited an incipient thermal instability above 1000 °C and underwent completely the t2 form to m–ZrO2 transition during subsequent, gradual cooling below 500 °C, the coating retained the tetragonal phase within the whole temperature range investigated. Hyperfine results suggest that the tetragonal phase stabilization is favored by the highly defective nature of the t1 form and consequently hardened by the availability of oxygen. The PAC derived activation energy for the fast diffusion of the oxygen vacancies inherent to the t2 form was determined as 0.54 ± 0.14 eV.


2010 ◽  
Vol 434-435 ◽  
pp. 193-196 ◽  
Author(s):  
Hui Zhang ◽  
Yong Jie Yan ◽  
Zheng Ren Huang ◽  
Xue Jian Liu ◽  
Dong Liang Jiang

Ultra-high temperature ceramic composites of ZrB2-SiC were densified by pressureless sintering. Ultra-fine ZrB2-SiC composite powders synthesized by sol-gel method were mixed with commercial ZrB2 and SiC powders. The sintered body of hybrid powders (combined commercial and synthesized composite powders) showed excellent properties not only in the relative density but also the flexure strength. Dry-pressed compacts using 4wt% Mo as a sintering aid were sintered to nearly full density at 2200°C/2h. The average strength was ~560MPa and the maximum was ~632MPa. SEM and TEM showed that SiC particles were distributed homogenously in the ZrB2 matrix and the average particle size was ~5μm. From HRTEM observations, the grain boundaries were apparently free of glassy phases and no intermediate phases existed.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3398
Author(s):  
Katarzyna Konopka ◽  
Marek Krasnowski ◽  
Justyna Zygmuntowicz ◽  
Konrad Cymerman ◽  
Marcin Wachowski ◽  
...  

The paper describes an investigation of Al2O3 samples and NiAl–Al2O3 composites consolidated by pulse plasma sintering (PPS). In the experiment, several methods were used to determine the properties and microstructure of the raw Al2O3 powder, NiAl–Al2O3 powder after mechanical alloying, and samples obtained via the PPS. The microstructural investigation of the alumina and composite properties involves scanning electron microscopy (SEM) analysis and X-ray diffraction (XRD). The relative densities were investigated with helium pycnometer and Archimedes method measurements. Microhardness analysis with fracture toughness (KIC) measures was applied to estimate the mechanical properties of the investigated materials. Using the PPS technique allows the production of bulk Al2O3 samples and intermetallic ceramic composites from the NiAl–Al2O3 system. To produce by PPS method the NiAl–Al2O3 bulk materials initially, the composite powder NiAl–Al2O3 was obtained by mechanical alloying. As initial powders, Ni, Al, and Al2O3 were used. After the PPS process, the final composite materials consist of two phases: Al2O3 located within the NiAl matrix. The intermetallic ceramic composites have relative densities: for composites with 10 wt.% Al2O3 97.9% and samples containing 20 wt.% Al2O3 close to 100%. The hardness of both composites is equal to 5.8 GPa. Moreover, after PPS consolidation, NiAl–Al2O3 composites were characterized by high plasticity. The presented results are promising for the subsequent study of consolidation composite NiAl–Al2O3 powder with various initial contributions of ceramics (Al2O3) and a mixture of intermetallic–ceramic composite powders with the addition of ceramics to fabricate composites with complex microstructures and properties. In composites with complex microstructures that belong to the new class of composites, in particular, the synergistic effect of various mechanisms of improving the fracture toughness will be operated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Erik Poloni ◽  
Florian Bouville ◽  
Christopher H. Dreimol ◽  
Tobias P. Niebel ◽  
Thomas Weber ◽  
...  

AbstractThe brick-and-mortar architecture of biological nacre has inspired the development of synthetic composites with enhanced fracture toughness and multiple functionalities. While the use of metals as the “mortar” phase is an attractive option to maximize fracture toughness of bulk composites, non-mechanical functionalities potentially enabled by the presence of a metal in the structure remain relatively limited and unexplored. Using iron as the mortar phase, we develop and investigate nacre-like composites with high fracture toughness and stiffness combined with unique magnetic, electrical and thermal functionalities. Such metal-ceramic composites are prepared through the sol–gel deposition of iron-based coatings on alumina platelets and the magnetically-driven assembly of the pre-coated platelets into nacre-like architectures, followed by pressure-assisted densification at 1450 °C. With the help of state-of-the-art characterization techniques, we show that this processing route leads to lightweight inorganic structures that display outstanding fracture resistance, show noticeable magnetization and are amenable to fast induction heating. Materials with this set of properties might find use in transport, aerospace and robotic applications that require weight minimization combined with magnetic, electrical or thermal functionalities.


2016 ◽  
Vol 869 ◽  
pp. 46-51
Author(s):  
Daniel Alessander Nono ◽  
Eron Fernandes da Silva ◽  
Maria do Carmo de Andrade Nono ◽  
Francisco Piorino Neto ◽  
Sergio Luiz Mineiro

The fracture toughness is one of the requirements for mechanical properties of materials for use in satellites. The ceramic TZP zirconia (tetragonal zirconia polycrystals) have been investigated for applications in ballistic armor. Due to the chemical inertness and fracture toughness, this material has the potential to act as a screen against impacts of micrometeorites and space debris. The ceramic composites of alumina-zirconia 3Y-TZP (tetragonal zirconia polycrystals doped with 3 mol% ytria ) are the materials with the best benefit / cost for this application. This paper presents and discusses the results obtained from the use of two techniques for determining fracture toughness. The composite alumina - 18.5% of 3Y-TZP zirconia nanoparticles obtained from deflocculated powders have been tested for Vickers and the SEVNB penetration method (Single-Edge-Notch Beam V) to obtain the fracture toughness values (KIC). The KIC values obtained were analyzed due to the lower dispersion of experimental values. The SEVNB method showed better reliability in determining the toughness values in the studied ceramics.


Author(s):  
T. M. Correia ◽  
Q. Zhang

Full-perovskite Pb 0.87 Ba 0.1 La 0.02 (Zr 0.6 Sn 0.33 Ti 0.07 )O 3 (PBLZST) thin films were fabricated by a sol–gel method. These revealed both rhombohedral and tetragonal phases, as opposed to the full-tetragonal phase previously reported in ceramics. The fractions of tetragonal and rhombohedral phases are found to be strongly dependent on film thickness. The fraction of tetragonal grains increases with increasing film thickness, as the substrate constraint throughout the film decreases with film thickness. The maximum of the dielectric constant ( ε m ) and the corresponding temperature ( T m ) are thickness-dependent and dictated by the fraction of rhombohedral and tetragonal phase, with ε m reaching a minimum at 400 nm and T m shifting to higher temperature with increasing thickness. With the thickness increase, the breakdown field decreases, but field-induced antiferroelectric–ferroelectric ( E AFE−FE ) and ferroelectric–antiferroelectric ( E FE−AFE ) switch fields increase. The electrocaloric effect increases with increasing film thickness. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’.


1984 ◽  
Vol 32 ◽  
Author(s):  
Rustum Roy ◽  
S. Komarneni ◽  
D.M. Roy

ABSTRACTInstead of aiming to prepare homogeneous gels and xerogels, this paper reports on work done to prepare deliberately diphasic materials. This has been achieved by three different paths: (1) mixing 2 sols; (2) mixing 1 sol with 1 solution; and (3) post formation diffusion of either one or two solutions.By the last named process we have made SiO2, mullite and alumina based composites, with silver halides, BaSO4, CdS, etc., as the dispersed phase. The crystal size can be confined to the initial pores by rapid diffusion giving rise to extremely fine second phases in the submicron range. Subsequent reduction of appropriate metallic salts can be used to give finely dispersed metals (e.g. Cu, Ni) in essentially any xerogel matrix. The open porosity makes these metal atoms very accessible.By the first two processes we have made both single phase and di-phasic gels of the same composition (prototype: mullite) and shown that though they cannot be distinguished by XRD, SEM, and TEM, by DTA and thermal processing, they are radically different. Such di-phasic gels store more metastable energy than any other solids.


1998 ◽  
Vol 13 (4) ◽  
pp. 803-811 ◽  
Author(s):  
Philippe Colomban

The problems encountered to tailor simultaneously various specific chemical or physical properties are discussed. Selected polymeric precursors used in association with fine powders allow the control of the nano/microstructure of composites and hence the preparation of functional (FGM) and hierarchical reinforced (HRC) composites, making it possible to combine several kinds of fibers, interphases, and matrices in the same composite (hot microwave absorbent), to control the fiber/matrix interface (long life times composites), to achieve net-shape sintering of 3D composite matrices, and to prepare thick films of metal-ceramic composites with tailored microwave absorption (radar stealthiness).


Sign in / Sign up

Export Citation Format

Share Document