Effect of Strain Rate on the Compressive Mechanical Properties of Concrete

2012 ◽  
Vol 450-451 ◽  
pp. 244-247 ◽  
Author(s):  
Ji Shu Sun ◽  
Li Jie Ma ◽  
Yuan Ming Dou ◽  
Ji Zhou

Concrete is one of the most widely used construction material throughout the world. But the properties of concrete under different strain rates differ from each other greatly. In order to investigate the effect of strain rate on concrete compressive mechanical properties, compressive experiments of concrete specimens (C35) are carried out on MTS, with the uniaxial strain rates ranging from 10-5/s to 10-2/s. The compressive mechanical properties of concrete under different stain rates, which include compressive strength, elastic modulus, peak strain and Poisson's ratio are studied systematically. The formulas which can describe the change laws of the compressive properties of concrete under different the strain rates are proposed. The test results show that the compresseive strength and elastic modulus of concrete would increase with the strain rate increasing. The effect of strain rate on peak strain and and Poisson's ratio is not significant. These research achievements can contribute to grasp the dynamic properties and build the dynamic constitutive models of concrete.

2015 ◽  
Vol 61 (2) ◽  
pp. 35-52 ◽  
Author(s):  
L. X. Xiong

AbstractTo investigate the mechanical properties of tunnel lining concrete under different moderate-low strain rates after high temperatures, uniaxial compression tests in association with ultrasonic tests were performed. Test results show that the ultrasonic wave velocity and mass loss of concrete specimen begin to sharply drop after high temperatures of 600 °C and 400 °C, respectively, at the strain rates of 10-5s-1 to 10-2s-1. The compressive strength and elastic modulus of specimen increase with increasing strain rate after the same temperature, but it is difficult to obtain an evident change law of peak strain with increasing strain rate. The compressive strength of concrete specimen decreases first, and then increases, but decreases again in the temperatures ranging from room temperature to 800 °C at the strain rates of 10-5s-1 to 10-2s-1. It can be observed that the strain-rate sensitivity of compressive strength of specimen increases with increasing temperature. In addition, the peak strain also increases but the elastic modulus decreases substantially with increasing temperature under the same strain rate.


2021 ◽  
Author(s):  
Meng Meng ◽  
Luke Frash ◽  
James Carey ◽  
Wenfeng Li ◽  
Nathan Welch ◽  
...  

Abstract Accurate characterization of oilwell cement mechanical properties is a prerequisite for maintaining long-term wellbore integrity. The drawback of the most widely used technique is unable to measure the mechanical property under in situ curing environment. We developed a high pressure and high temperature vessel that can hydrate cement under downhole conditions and directly measure its elastic modulus and Poisson's ratio at any interested time point without cooling or depressurization. The equipment has been validated by using water and a reasonable bulk modulus of 2.37 GPa was captured. Neat Class G cement was hydrated in this equipment for seven days under axial stress of 40 MPa, and an in situ measurement in the elastic range shows elastic modulus of 37.3 GPa and Poisson's ratio of 0.15. After that, the specimen was taken out from the vessel, and setted up in the triaxial compression platform. Under a similar confining pressure condition, elastic modulus was 23.6 GPa and Possion's ratio was 0.26. We also measured the properties of cement with the same batch of the slurry but cured under ambient conditions. The elastic modulus was 1.63 GPa, and Poisson's ratio was 0.085. Therefore, we found that the curing condition is significant to cement mechanical property, and the traditional cooling or depressurization method could provide mechanical properties that were quite different (50% difference) from the in situ measurement.


Author(s):  
John J. Quicksall ◽  
Robert L. Jackson ◽  
Itzhak Green

This work uses the finite element technique to model the elasto-plastic deformation of a hemisphere contacting a rigid flat for various material properties typical of aluminum, bronze, copper, titanium and malleable cast iron. Additionally, this work conducted parametric FEM tests on a generic material in which the elastic modulus and Poisson’s ratio are varied independently while the yield strength is held constant. A larger spectrum of material properties are covered in this work than in most previous works. The results are compared to two previously formulated elasto-plastic models simulating the deformation of a hemisphere in contact with a rigid flat. Both of the previously formulated models use carbon steel mechanical properties to arrive at empirical formulations implied to pertain to various materials. While both models considered several carbon steels with varying yield strengths, they did not test materials with varying Poisson’s ratio or elastic modulus. The previously generated elasto-plastic models give fairly good predictions when compared to the FEM results for various material properties from the current work, except that one model produces more accurate predictions overall, especially at large deformations where other models neglect important trends due to decreases in “hardness” with increasing deformation.


2017 ◽  
Vol 52 (3) ◽  
pp. 361-372 ◽  
Author(s):  
Gongdai Liu ◽  
R Ghosh ◽  
A Vaziri ◽  
A Hossieni ◽  
D Mousanezhad ◽  
...  

A typical plant leaf can be idealized as a composite having three principal fibers: the central mid-fiber corresponding to the mid-rib, straight parallel secondary fibers attached to the mid-fiber representing the secondary veins, and then another set of parallel fibers emanating from the secondary fibers mimicking the tertiary fibers embedded in a matrix material. This paper introduces a biomimetic composite design inspired by the morphology of venous leafs and investigates the effects of venation morphologies on the in-plane mechanical properties of the biomimetic composites using finite element method. The mechanical properties such as Young’s moduli, Poisson’s ratio, and yield stress under uniaxial loading of the resultant composite structures was studied and the effect of different fiber architectures on these properties was investigated. To this end, two broad types of architectures were used both having similar central main fiber but differing in either having only secondary fibers or additional tertiary fibers. The fiber and matrix volume fractions were kept constant and a comparative parametric study was carried out by varying the inclination of the secondary fibers. The results show that the elastic modulus of composite in the direction of main fiber increases linearly with increasing the angle of the secondary fibers. Furthermore, the elastic modulus is enhanced if the secondary fibers are closed, which mimics composites with closed cellular fibers. In contrast, the elastic modulus of composites normal to the main fiber ( x direction) exponentially decreases with the increase of the angle of the secondary fibers and it is little affected by having secondary fibers closed. Similar results were obtained for the yield stress of the composites. The results also indicate that Poisson’s ratio linearly increases with the secondary fiber angle. The results also show that for a constant fiber volume fraction, addition of various tertiary fibers may not significantly enhance the mechanical properties of the composites. The mechanical properties of the composites are mainly dominated by the secondary fibers. Finally, a simple model was proposed to predict these behaviors.


2011 ◽  
Vol 250-253 ◽  
pp. 1452-1455 ◽  
Author(s):  
Lu Bo Meng ◽  
Tian Bin Li ◽  
Liang Wen Jiang ◽  
Hong Min Ma

High temperature conventional triaxial compression test of shale are carried out by the MTS815 servo-controlled testing machine, based on the experimental results, the relationships between temperature and shale peak strength, elastic modulus, Poisson's ratio, cohesion, internal friction angle are investigated. Although the experimental results are discrete comparatively, the general law is obvious. When the confining pressure imposed on shale is constant and the temperature changes form 25°C to 120°C, with the increasing of the temperature, the triaxial compression strength, shear strength gradually increase, while average elastic modulus, Poisson's ratio has a slightly decrease. The thermal stress generated by the high temperature plays a role to accommodate the deformation and the function of preventing crack propagation, thus the bearing capacity of shale samples are strengthened. But the influence of temperature on shale mechanical properties mutates when the temperature is at 80°C. Shale peak strength dramatically decreased, average elastic modulus decreased slightly, and Poisson's ratio also increased slightly, which indicated that at 80°C, different thermal expansivity of mineral particles of shale may cause cross-grain boundary thermal expansion incongruous, creating additional thermal stress, thus the sample’s bearing capacity decreased.


Author(s):  
Jun Hua ◽  
Zhirong Duan ◽  
Chen Song ◽  
Qinlong Liu

In this paper, the mechanical properties, including elastic properties, deformation mechanism, dislocation formation and crack propagation of graphene/Cu (G/Cu) nanocomposite under uniaxial tension are studied by molecular dynamics (MD) method and the strain rate dependence is also investigated. Firstly, through the comparative analysis of tensile results of single crystal copper (Cu), single slice graphene/Cu (SSG/Cu) nanocomposite and double slice graphene/Cu (DSG/Cu) nanocomposite, it is found that the G/Cu nanocomposites have larger initial equivalent elastic modulus and tensile ultimate strength comparing with Cu and the more content of graphene, the greater the tensile strength of composites. Afterwards, by analyzing the tensile results of SSG/Cu nanocomposite under different strain rates, we find that the tensile ultimate strength of SSG/Cu nanocomposite increases with the increasing of strain rate gradually, but the initial equivalent elastic modulus basically remains unchanged.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Guoliang Yang ◽  
Jingjiu Bi ◽  
Xuguang Li ◽  
Jie Liu ◽  
Yanjie Feng

Shale gas is the most important new energy source in the field of energy, and its exploitation is very important. The research on the dynamic mechanical properties of shale is the premise of exploitation. To study the dynamic mechanical properties of shale from the Changning-Weiyuan area of Sichuan Province, China, under confining pressure, we used a split Hopkinson pressure bar (SHPB) test system with an active containment device to carry out dynamic compression tests on shale with different bedding angles. (1) With active confining pressure, the shale experiences a high strain rate, and its stress-strain curve exhibits obvious plastic deformation. (2) For the same impact pressure, the peak stress of shale describes a U-shaped curve with an increasing bedding angle; besides, the peak stress of shale with different bedding angles increases linearly with rising confining pressure. The strain rate shows a significant confining pressure enhancement effect. With active confining pressure, the peak strain gradually decreases as the bedding angle increases. (3) As a result of the influence of different bedding angles, the dynamic elastic modulus of shale has obvious anisotropic characteristics. Shale with different bedding angles exhibits different rates of increase in the dynamic elastic modulus with rising confining pressure, which may be related to differences in the development of planes of weakness in the shale. The results of this study improve our understanding of the behavior of bedded shale under stress.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3244 ◽  
Author(s):  
Francesco Baino ◽  
Elisa Fiume

Porosity is recognized to play a key role in dictating the functional properties of bioactive scaffolds, especially the mechanical performance of the material. The mechanical suitability of brittle ceramic and glass scaffolds for bone tissue engineering applications is usually evaluated on the basis of the compressive strength alone, which is relatively easy to assess. This work aims to investigate the porosity dependence of the elastic properties of silicate scaffolds based on the 45S5 composition. Highly porous glass–ceramic foams were fabricated by the sponge replica method and their elastic modulus, shear modulus, and Poisson’s ratio were experimentally determined by the impulse excitation technique; furthermore, the failure strength was quantified by compressive tests. As the total fractional porosity increased from 0.52 to 0.86, the elastic and shear moduli decreased from 16.5 to 1.2 GPa and from 6.5 to 0.43 GPa, respectively; the compressive strength was also found to decrease from 3.4 to 0.58 MPa, whereas the Poisson’s ratio increased from 0.2692 to 0.3953. The porosity dependences of elastic modulus, shear modulus and compressive strength obeys power-law models, whereas the relationship between Poisson’s ratio and porosity can be described by a linear approximation. These relations can be useful to optimize the design and fabrication of porous biomaterials as well as to predict the mechanical properties of the scaffolds.


2001 ◽  
Vol 687 ◽  
Author(s):  
Kamili M. Jackson ◽  
Richard L. Edwards ◽  
Guy F. Dirras ◽  
William N. Sharpe

AbstractSilicon carbide is a very attractive material for a variety of applications. Originally considered for use in high power and high temperature electronics because of its large bandgap, designers of MEMS are now considering use of silicon carbide because of its stability at high temperatures, resistance to corrosives, high stiffness, and radiation resistance. However, as with any new structural material, its mechanical properties must be measured for design information. This research measures the elastic modulus, strength, and Poisson's ratio of two different silicon carbides using microtensile testing. One material is a 0.5-1νm thick film from Case Western Reserve University. Preliminary results give an average of 420 GPa for elastic modulus, a strength of 1.2 GPa, and a Poisson's ratio of 0.19. The second material is from Massachusetts Institute of Technology with an average thickness of 30 microns. Preliminary results show an elastic modulus of 430 GPa, a strength of 0.49 GPa, and a Poisson's ratio of 0.24. In addition to the most recent results, techniques used to obtain these results, microstructure investigations, and a comparison of the materials are detailed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tanmoy Chatterjee ◽  
Souvik Chakraborty ◽  
Somdatta Goswami ◽  
Sondipon Adhikari ◽  
Michael I. Friswell

AbstractWe demonstrate that the consideration of material uncertainty can dramatically impact the optimal topological micro-structural configuration of mechanical metamaterials. The robust optimization problem is formulated in such a way that it facilitates the emergence of extreme mechanical properties of metamaterials. The algorithm is based on the bi-directional evolutionary topology optimization and energy-based homogenization approach. To simulate additive manufacturing uncertainty, combinations of spatial variation of the elastic modulus and/or, parametric variation of the Poisson’s ratio at the unit cell level are considered. Computationally parallel Monte Carlo simulations are performed to quantify the effect of input material uncertainty to the mechanical properties of interest. Results are shown for four configurations of extreme mechanical properties: (1) maximum bulk modulus (2) maximum shear modulus (3) minimum negative Poisson’s ratio (auxetic metamaterial) and (4) maximum equivalent elastic modulus. The study illustrates the importance of considering uncertainty for topology optimization of metamaterials with extreme mechanical performance. The results reveal that robust design leads to improvement in terms of (1) optimal mean performance (2) least sensitive design, and (3) elastic properties of the metamaterials compared to the corresponding deterministic design. Many interesting topological patterns have been obtained for guiding the extreme material robust design.


Sign in / Sign up

Export Citation Format

Share Document