Preparation and Characterization of Macromeritic Tungsten Powder Reduced by Ammonium Paratungstate at Medium Temperature

2012 ◽  
Vol 468-471 ◽  
pp. 2584-2587
Author(s):  
Rui Xin Wang ◽  
Zhi Meng Guo ◽  
Jun Jie Hao ◽  
Ji Luo ◽  
Yan Jun Xin

The macromeritic tungsten powder was prepared by wet hydrogen reduction at medium temperature; the coarse powder of Ammonium paratungstate powder (APT) was used as raw material. It is obtained by evaporating and crystallizating adding alkalia metal salts in the solution of ammonium tungstate. The microstructure, phase composition and particle size of the macromeritic tungsten powder were investigated by SEM, XRD and test analysis sieves. The effects of kinds, contents of alkali metal salts and the temperature in the reduction were studied. The results revealed that ideal tungsten powder, with the good fluditity, spherical, integrate and well-distributed, could be obtained. The raw material is the solution of ammonium tungstate adding NaCl, Li2CO3 and KCl , the concentration of them are all 3g/L, and it is under the condition of 1000°C,180min in wet hydrogen atmosphere. The average particle size is 67μm, the maximum is 150μm, the biggest loose density is 13.41g/cm3, and the best powder flowability is 9s/50g.

2014 ◽  
Vol 1010-1012 ◽  
pp. 961-965
Author(s):  
Jian Qiang Xiao ◽  
Guo Wei He ◽  
Yan Jin Hu

Bauxite waste sludge as a raw material, the use of reverse chemical coprecipitation synthesize Fe3O4. Researching temperature, precipitation concentration, aging time and Fe2+/Fe3+ molar ratio effect on the particle size, morphology. Optimal experimental conditions: temperature 70 °C, the precipitant NaOH mass ratio of 10%, aging time 3h, Fe2+/Fe3+ molar ratio of 2:3. Test methods using a laser particle size analyzer, XRD analysis of the products were characterized, the product is Fe3O4, the average particle size of 0.11mm.


Author(s):  
Van Minh Nguyen ◽  
Tien Hiep Nguyen ◽  
Stanislav V. Gorobinsky

In this work, nanopowders (NP) Co(OH)2 were obtained by chemical precipitation from aqueous solutions of cobalt nitrate Co(NO3)2 and alkali NaOH (10 wt. %) using surfactants: sodium dodecyl sulfate (SDS) and cetylpyridinium chloride (CPC) (0.1 wt. %). It was shown that Co(OH)2 NP with 0.1% SDS is the best quality product, since its dispersion increases more than 2 times compared to the samples with 0.1% CPC and without surfactants. In this case, the Co(OH)2 NP has the form of flakes with an irregular shape and a nanometer size (about 100 nm) with an average thickness of 30 nm. It was found that the average particle size of Co NP obtained by hydrogen reduction of Co(OH)2 NP with 0.1% SDS at 280°C has a maximum on the distribution histogram shifted to the interval 41–50 nm, which is characterized by a narrow particle size distribution and represents spherical particles sintered with each other.


2010 ◽  
Vol 17 (02) ◽  
pp. 223-228
Author(s):  
JAE-SIK YOON

Niobium powder was fabricated by metallothermic reduction process using K2NbF7 as the raw material, KCl and KF as the diluents and Na as the reducing agent. The apparatus for the experiment was designed and built specifically for the present study. Varying properties of niobium powder depending on reaction temperature and excess of reducing agent were analyzed. The niobium particle size increased significantly as the reduction temperature increased from 993 to 1093 K. The particle size was fairly uniform at a given reaction temperature, varying from 0.2 μ m to 50 nm depending on the reaction temperature. The yield of niobium powder increased from 58 to 83% with an increase in reaction temperature. The average particle size of niobium powder was improved from 70 nm to 0.2 μ m with the increase in the amount of Na excess. In addition, the yield rate of Nb powder was 82% in the 5% excess sodium.


2022 ◽  
Author(s):  
Shujie Yang ◽  
Jianbin Shen ◽  
Tiefei He ◽  
Chao Chen ◽  
Junming Wang ◽  
...  

Abstract Waste paper has become a promising raw material for the pulp and paper industry due to its low cost and because it is conducive to sustainable development. Unfortunately, waste paper contains a high volume of printed paper that is difficult to deink, which restricts its applications. Flotation deinking plays an essential role in the product quality and process cost of wastepaper recycling. This study was performed to evaluate the deinkability of environmentally friendly offset inks by flotation deinking. For this purpose, three series of four-color inks, namely, hybrid light emitting diode ultraviolet (LED‒UV), LED‒UV, and vegetable oil‒based inks, were printed on white lightweight coated papers under laboratory conditions. The deinking methodology involves repulping, deinking agent treatment, flotation, hand sheet making, and evaluation of the produced hand sheets. The obtained results indicated that the hybrid LED‒UV prints had the best deinkability. After flotation deinking, the deinking efficiency and the whiteness of the hybrid LED‒UV ink increased by 58.1% and 47.6%, respectively. LED‒UV ink had a 46.9% increase in the deinking efficiency and a 37.0% increase in the whiteness of the hand sheet. The deinking efficiency of the vegetable oil‒based ink was the lowest, at 42.1%, and the whiteness of the hand sheet increased only by 23.8%. The particle size distribution analysis demonstrated that the hybrid LED‒UV four-color ink exhibited a larger value of the average particle size than the two other. Scanning electron microscopy revealed that the hybrid LED‒UV ink particles on the surface of the fibers were the least abundant after deinking. The physical strength properties of the hand sheets, including tensile index, folding resistance, and cohesion of the hybrid LED‒UV, LED‒UV inks, and vegetable oil‒based inks, increased.


2009 ◽  
Vol 1174 ◽  
Author(s):  
Jaekeun Yu ◽  
Jwayeon Kim ◽  
Jeoungsu Han

AbstractBy using tin chloride solution as the raw material, a nano-sized tin oxide powder with average particle size below 50 nm is generated by spray pyrolysis reaction. This study also examines the influences of the reaction parameters such as reaction temperature and the concentration of raw material solution on the powder properties. As the reaction temperature increases from 800 to 850 ℃, the average particle size of the generated powder increases from 20 nm to 30 nm. As the reaction temperature reaches 900 ℃, the droplets are composed of nano-particles with average size of 30 nm, while the average size of individual particles increases remarkably up to 80˜100 nm. When the tin concentration reaches 75 g/L, the average particle size of the powder is below 20 nm. When the tin concentration reaches 150 g/L, the droplets are composed of nano particles with average size around 30 nm, whereas the average size of independent particles increases up to 80˜100 nm. When the concentration reaches 400 g/L, the droplets are composed of nano-particles with average size of 30 nm.


2011 ◽  
Vol 409 ◽  
pp. 743-748
Author(s):  
Guan Jhou Chen ◽  
Weng Sing Hwang ◽  
Shih Hsien Liu ◽  
Jaw Min Chou

In the integrated steel mills fabrication processes, the by-product of flue dust and electrostatic precipitator dust were found to be rich with large amounts of iron and carbon content and it could be recycled as a raw material for blast furnaces. In this study, we use the “Cold-bonded Pellet; CBP” technique to prepare the recycling samples for subsequent processing. Therefore, this study investigated under a fixed amount of bentonite added, the choice of different types of bentonite on the powder granulation performance and strength of particle duration effects, bentonite used as a basis for adjustment. The results showed that Bentonite samples of the granulation efficiency increase, relative to its yield and the rate of sticky increase. In general, CBP particle compressive strength increased, duration have increased, and found that curing condition B are large than the A method. In addition, by particle size analysis results show that, bentonite average particle size of 11-12μm have better compressive strength. Comprehensive assessment of granulation and mechanical properties, of which A label in four Bentonite can be preferred.


2014 ◽  
Vol 70 (1) ◽  
Author(s):  
Mohamad Azani Jalani ◽  
Leny Yuliati ◽  
Hendrik O. Lintang

Gold nanoparticles (AuNPs) with small particle size have been difficult to be synthesized due to their strong agglomeration. Herein we report that the nanochannels of mesoporous silica synthesized from template sol-gel synthesis were utilized to prepare AuNPs by employing thermal hydrogen reduction. Mesoporous silica composite with an interpore distance of 4.1 nm was successfully fabricated as a thin film by an amphiphilic trinuclear gold(I) pyrazolate complex ([Au3Pz3]C10TEG) as a template. In contrast to calcination method of this composite and the bulk [Au3Pz3]C10TEG complex at 450ºC for 3 h, thermal hydrogen reduction at 250ºC for 2 h showed transmission electron microscope (TEM) images and diffraction pattern with smaller particle size (14.5 nm) and more homogenous distribution of AuNPs with up to 44% of the particle size in the range of 10 to 20 nm. The decreasing of average particle size in this new strategy indicated by the red-shifting of the surface plasmon resonance (SPR) band from 518 (AuNPs from the bulk [Au3Pz3]C10TEG complex) and 544 (calcination) to 558 nm.


2014 ◽  
Vol 609-610 ◽  
pp. 244-249 ◽  
Author(s):  
Jian Lin Xu ◽  
Liang Zhang ◽  
Qiang Guo ◽  
Sheng Gang Zhou ◽  
Chong Feng

Taking antimony powder with 75μm of average particle size as raw material, the antimony nanoparticles were synthesized by mechanical ball milling. Crystalline structure, morphology and particle size of the antimony nanoparticles were characterized by XRD, TEM and FT-IR. The effect of milling mediums and ball milling speed on results antimony nanoparticles were studied using dry grinding and wet grinding methods. The results show that the antimony nanoparticles can be prepared successfully by wet process of ball milling. When the ball milling speed is 150 r/min and the milling mediums is a composites of distilled water and OP-10, the best antimony nanoparticles were prepared, which is high dispersibility and the average particle size is 10 nm.


2012 ◽  
Vol 531-532 ◽  
pp. 226-229
Author(s):  
Xing Wu Zou ◽  
Shu Xuan Wang ◽  
Zhan Shou Yang ◽  
Mi Xiang Qi ◽  
Shu Ya Wang

A new synthetic technology of Strontium carbonate with high gravity is introduced in this paper. We got ultrafine SrCO3 powders with Sr(NO3)2 and NaCO3 or CO2 as raw material by high gravity method. We studied flows, the rotating speed, additives and CO2 as the reactants on the morphology of strontium carbonate. The results show that the presence of additive-free, we got rod-like structure of strontium carbonate. Added EDTA, we got a good dispersion of spherical particles of narrow particle size distribution. The presence of EDTA, the average particle size of spherical particles decreases with the speed increases. CO2 alternative Na2CO3 as the reactants, the presence of additive-free, we got the bundle structure of strontium carbonate. The presence of EDTA, we got spherical particles, but the particle dispersion is not well, gathered together.


1970 ◽  
Vol 26 (1) ◽  
pp. 16 ◽  
Author(s):  
S Balasubramanian ◽  
Rajkumar Rajkumar ◽  
K K Singh

Experiment to identify ambient grinding conditions and energy consumed was conducted for fenugreek. Fenugreek seeds at three moisture content (5.1%, 11.5% and 17.3%, d.b.) were ground using a micro pulverizer hammer mill with different grinding screen openings (0.5, 1.0 and 1.5 mm) and feed rate (8, 16 and 24 kg h-1) at 3000 rpm. Physical properties of fenugreek seeds were also determined. Specific energy consumptions were found to decrease from 204.67 to 23.09 kJ kg-1 for increasing levels of feed rate and grinder screen openings. On the other hand specific energy consumption increased with increasing moisture content. The highest specific energy consumption was recorded for 17.3% moisture content and 8 kg h-1 feed rate with 0.5 mm screen opening. Average particle size decreased from 1.06 to 0.39 mm with increase of moisture content and grinder screen opening. It has been observed that the average particle size was minimum at 0.5 mm screen opening and 8 kg h-1 feed rate at lower moisture content. Bond’s work index and Kick’s constant were found to increase from 8.97 to 950.92 kWh kg-1 and 0.932 to 78.851 kWh kg-1 with the increase of moisture content, feed rate and grinder screen opening, respectively. Size reduction ratio and grinding effectiveness of fenugreek seed were found to decrease from 4.11 to 1.61 and 0.0118 to 0.0018 with the increase of moisture content, feed rate and grinder screen opening, respectively. The loose and compact bulk densities varied from 219.2 to 719.4 kg m-3 and 137.3 to 736.2 kg m-3, respectively.  


Sign in / Sign up

Export Citation Format

Share Document