Characterization of Iron Doped Titanium Nitride Thin Films Prepared by Magnetron Sputtering

2008 ◽  
Vol 47-50 ◽  
pp. 1093-1096
Author(s):  
Wen Song Lin ◽  
Jing Chen ◽  
Ji Zhou

Iron-doped titanium nitride films deposed on glass substrates were prepared by magnetron sputtering technique. X-ray diffraction (XRD) was employed to analyze the phases existed in the films. Investigations have shown that as-deposited films were XRD-amorphous, and the TiN phase was formed in the film after additional annealing. It was found that iron-doped TiN films preserved the same crystal structure as TiN. The ferromagnetic properties of iron doped TiN films have been measured using vibrating sample magnetometer (VSM), and the electric resistances of the films were also determined by IR four-probe methods. The experiment results proved that the iron-doped TiN films possessed ferromagnetic property with low electric resistance at room temperature. It was investigated that the saturation magnetization was about 2.21×108 A/m, the coercivity about 23 kA/m, and the electric resisitivity 1.401×10-6 3•m for typical Fe-doped-TiN-films sample.

2012 ◽  
Vol 60 (1) ◽  
pp. 137-140 ◽  
Author(s):  
RI Chowdhury ◽  
MS Islam ◽  
F Sabeth ◽  
G Mustafa ◽  
SFU Farhad ◽  
...  

Cadmium selenide (CdSe) thin films have been deposited on glass/conducting glass substrates using low-cost electrodeposition method. X-ray diffraction (XRD) technique has been used to identify the phases present in the deposited films and observed that the deposited films are mainly consisting of CdSe phases. The photoelectrochemical (PEC) cell measurements indicate that the CdSe films are n-type in electrical conduction, and optical absorption measurements show that the bandgap for as-deposited film is estimated to be 2.1 eV. Upon heat treatment at 723 K for 30 min in air the band gap of CdSe film is decreased to 1.8 eV. The surface morphology of the deposited films has been characterized using scanning electron microscopy (SEM) and observed that very homogeneous and uniform CdSe film is grown onto FTO/glass substrate. The aim of this work is to use n-type CdSe window materials in CdTe based solar cell structures. The results will be presented in this paper in the light of observed data.DOI: http://dx.doi.org/10.3329/dujs.v60i1.10352  Dhaka Univ. J. Sci. 60(1): 137-140 2012 (January)


2010 ◽  
Vol 663-665 ◽  
pp. 572-575 ◽  
Author(s):  
Han Fa Liu ◽  
Hua Fu Zhang ◽  
Ai Ping Zhou

Ti-Ga co-doped ZnO thin films (TGZO) have been successfully prepared on glass substrates by DC magnetron sputtering at room temperature. The X-ray diffraction (XRD) patterns show that all the deposited films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. The distance between target and substrate was varied from 41 to 75 mm. The crystallinity increases obviously and the electrical resistivity decreases when the distance between target and substrate decreases from 75 to 46 mm. However, as the distance decreases further, the electrical resistivity increases. It is obtained that the lowest resistivity is 2.0610-4cm when the distance between target and substrate is 46 mm. In the visible region, the TGZO films show a high average transmittance of above 90 %.


2013 ◽  
Vol 543 ◽  
pp. 277-280
Author(s):  
Marius Dobromir ◽  
Alina Vasilica Manole ◽  
Simina Rebegea ◽  
Radu Apetrei ◽  
Maria Neagu ◽  
...  

Rutile N-doped TiO2thin films were grown by RF magnetron sputtering on amorphous and crystalline substrates at room temperature. The surface elemental analysis, investigated by X-ray photoelectron spectroscopy indicated that the nitrogen content of the films could be adjusted up to values as high as 4.1 at.%. As demonstrated by the X-ray diffraction data, the as-deposited films (100 200 nm thick) showed no detectable crystalline structure, while after successive annealing in air for one hour at 400°C, 500°C and 600°C, the (110) rutile peaks occurred gradually as dominant features. The rutile phase in the films was confirmed by the band gap values of the deposited materials, which stabilized at 3.1 eV, for the thin films having 200 nm thicknesses.


Surfaces ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 106-114
Author(s):  
Yannick Hermans ◽  
Faraz Mehmood ◽  
Kerstin Lakus-Wollny ◽  
Jan P. Hofmann ◽  
Thomas Mayer ◽  
...  

Thin films of ZnWO4, a promising photocatalytic and scintillator material, were deposited for the first time using a reactive dual magnetron sputtering procedure. A ZnO target was operated using an RF signal, and a W target was operated using a DC signal. The power on the ZnO target was changed so that it would match the sputtering rate of the W target operated at 25 W. The effects of the process parameters were characterized using optical spectroscopy, X-ray diffraction, and scanning electron microscopy, including energy dispersive X-ray spectroscopy as well as X-ray photoelectron spectroscopy. It was found that stoichiometric microcrystalline ZnWO4 thin films could be obtained, by operating the ZnO target during the sputtering procedure at a power of 55 W and by post-annealing the resulting thin films for at least 10 h at 600 °C. As FTO coated glass substrates were used, annealing led as well to the incorporation of Na, resulting in n+ doped ZnWO4 thin films.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3191
Author(s):  
Arun Kumar Mukhopadhyay ◽  
Avishek Roy ◽  
Gourab Bhattacharjee ◽  
Sadhan Chandra Das ◽  
Abhijit Majumdar ◽  
...  

We report the surface stoichiometry of Tix-CuyNz thin film as a function of film depth. Films are deposited by high power impulse (HiPIMS) and DC magnetron sputtering (DCMS). The composition of Ti, Cu, and N in the deposited film is investigated by X-ray photoelectron spectroscopy (XPS). At a larger depth, the relative composition of Cu and Ti in the film is increased compared to the surface. The amount of adventitious carbon which is present on the film surface strongly decreases with film depth. Deposited films also contain a significant amount of oxygen whose origin is not fully clear. Grazing incidence X-ray diffraction (GIXD) shows a Cu3N phase on the surface, while transmission electron microscopy (TEM) indicates a polycrystalline structure and the presence of a Ti3CuN phase.


2014 ◽  
Vol 908 ◽  
pp. 124-128 ◽  
Author(s):  
S.B. Chen ◽  
Z.Y. Zhong

Thin films of transparent conducting gallium and titanium doped zinc oxide (GTZO) were prepared on glass substrates by magnetron sputtering technique using a sintered ceramic target. The microstructural properties of the deposited thin films were characterized with X-ray diffraction (XRD). The results demonstrated that the polycrystalline GTZO thin films consist of the hexagonal crystal structures with c-axis as the preferred growth orientation normal to the substrate, and that the working pressure significantly affects the crystal structures of the thin films. The GTZO thin film deposited at the working pressure of 0.4 Pa has the best crystallinity, the largest grain size and the lowest stress.


Author(s):  
Xiao Di Liu ◽  
Dacheng Zhang

Nanosized tin oxide thin films were fabricated on silicon and quartz glass substrates by direct current reactive magnetron sputtering method, and then were calcined at different temperatures ranging from 400°C to 900°C. The results analyzed by X ray photoemission spectra (XPS), scanning electron microscope (SEM), Spectroscopic ellipsometer, Powder X-ray diffraction (XRD), and HP4145B semiconductor parameter analyzer measurements show that the sample with quartz glass substrate and calcinated at 650°C possesses better properties and suitable to be used in our gas sensor.


2020 ◽  
Vol 850 ◽  
pp. 267-272 ◽  
Author(s):  
Regina Burve ◽  
Vera Serga ◽  
Aija Krūmiņa ◽  
Raimons Poplausks

Due to its magnetic, electrical, absorption, and emission properties, nanoscale gadolinium oxide is widely used in various fields. In this research, nanocrystalline Gd2O3 powders and films on glass substrates have been produced by the extraction-pyrolytic method. X-ray diffraction analysis revealed the formation of single phase Gd2O3 with cubic crystal structure and the mean crystallite size from 9 to 25 nm in all produced materials. The morphology of samples has been characterized by scanning electron microscopy and transmission electron microscopy.


2001 ◽  
Vol 15 (17n19) ◽  
pp. 769-773 ◽  
Author(s):  
M. GARCIA-ROCHA ◽  
A. CONDE-GALLARDO ◽  
I. HERNANDEZ-CALDERON ◽  
R. PALOMINO-MERINO

In this work we show the results on tile growth and optical characterization of TiO 2 thin films doped with Eu atoms. Eu:TiO2 films were grown at room temperature with different Eu concentrations by sol-gel on Si Corning glass substrates. A different crystalline structure is developed for the films deposited on Corning glass than those deposited on Si as observed from x-ray diffraction experiments. Room and low temperature photoluminescence (PL) was measured by using two different lines (325 and 442 nm) of a HeCd laser. A strong PL signal associated to the 5 D 0→7 F 2 transition from Eu +3 was observed. A better emission was obtained from those films deposited on Si substrates, Finally, the evolution of the PL signal is studied when the samples are annealed at different temperatures in O 2 atmosphere.


Sign in / Sign up

Export Citation Format

Share Document