A Threshold Voltage Simulation of Hydrogen-Terminated Diamond MESFETs

2012 ◽  
Vol 482-484 ◽  
pp. 1093-1096 ◽  
Author(s):  
Xiao Feng Zhuang ◽  
Qing Kai Zeng ◽  
Bing Ren ◽  
Zhen Hua Wang ◽  
Yue Lu Zhang ◽  
...  

In this paper, the threshold voltage of diamond film-based metal-semiconductor field effect transistors (MESFETs) has been simulated using Silvaco TCAD tools. The drain current (Id) versus gate voltage (Vg) relationship, and the distribution of acceptors in diamond surface conduction layer were also investigated. From the simulation results, it was found that the gate length contributed the most to the threshold voltage, while the doping depth almost had no impact on the threshold voltage value.

2011 ◽  
Vol 1282 ◽  
Author(s):  
David A. J. Moran ◽  
Donald A. MacLaren ◽  
Samuele Porro ◽  
Richard Hill ◽  
Helen McLelland ◽  
...  

ABSTRACTHydrogen terminated diamond field effect transistors (FET) of 50nm gate length have been fabricated, their DC operation characterised and their physical and chemical structure inspected by Transmission Electron Microscopy (TEM) and Electron Energy Loss Spectroscopy (EELS). DC characterisation of devices demonstrated pinch-off of the source-drain current can be maintained by the 50nm gate under low bias conditions. At larger bias, off-state output conductance increases, demonstrating most likely the onset of short-channel effects at this reduced gate length.


2008 ◽  
Vol 600-603 ◽  
pp. 1059-1062 ◽  
Author(s):  
Haruka Shimizu ◽  
Yasuo Onose ◽  
Tomoyuki Someya ◽  
Hidekatsu Onose ◽  
Natsuki Yokoyama

We developed normally-off 4H-SiC vertical junction field effect transistors (JFETs) with large current density. The effect of forming an abrupt junction between the gate and the channel was simulated, and vertical JFETs were then fabricated with abrupt junctions. As a result, a large rated drain current density (500 A/cm2) and a low specific on-resistance (2.0 mWcm2) were achieved for small devices. The blocking voltage was 600 V. These results were due to a reduction of the threshold voltage by forming the abrupt junction between the gate and the channel.


1998 ◽  
Vol 37 (Part 2, No. 7B) ◽  
pp. L852-L854 ◽  
Author(s):  
Toshiyuki Oishi ◽  
Katsuomi Shiozawa ◽  
Akihiko Furukawa ◽  
Yuji Abe ◽  
Yasunori Tokuda

2010 ◽  
Vol 09 (04) ◽  
pp. 317-320 ◽  
Author(s):  
YE WANG ◽  
XIAO WEI SUN ◽  
JUNLIANG ZHAO ◽  
GREGORY KIA LIANG GOH ◽  
LANLAN CHEN ◽  
...  

ZnO nanowires (NWs), grown by hydrothermal and vapor phase transport (VPT) methods, were employed as the channel layers to fabricate single nanowire Field Effect Transistors (NWFETs) with a p+-silicon as the bottom gate. The FET employing hydrothermal grown ZnO NWs shows n-type depletion mode with a field mobility of 18.27 cm2/V⋅s, an on/off ratio of 106, and a threshold voltage of -48.5 V. In comparison, the device using VPT grown NWs operates in n-type depletion mode with a field effect mobility of 36.94 cm2/V⋅s, a drain current on/off ratio of 105, and a threshold voltage of -14 V. The reason for the difference of threshold voltage and the mobility by two methods was discussed in this paper.


2016 ◽  
Vol 25 (03n04) ◽  
pp. 1640020 ◽  
Author(s):  
J. A. Delgado Notario ◽  
E. Javadi ◽  
J. Calvo-Gallego ◽  
E. Diez ◽  
J. E. Velázquez ◽  
...  

We report on room temperature non-resonant detection of terahertz radiation using strained Silicon MODFETs with nanoscale gate lengths. The devices were excited at room temperature by an electronic source at 150 and 300 GHz. A maximum intensity of the photoresponse signal was observed around the threshold voltage. Results from numerical simulations based on synopsys TCAD are in agreement with experimental ones. The NEP and Responsivity were calculated from the photoreponse signal obtained experimentally. Those values are competitive with the commercial ones. A maximum of photoresponse was obtained (for all devices) when the polarization of the incident terahertz radiations was in parallel with the fingers of the gate pads. For applications, the device was used as a sensor within a terahertz imaging system and its ability for inspection of hidden objects was demonstrated.


2002 ◽  
Vol 719 ◽  
Author(s):  
Minoru Tachiki ◽  
Hiroaki Ishizaka ◽  
Tokishige Banno ◽  
Toshikatsu Sakai ◽  
Kwang-Soup Song ◽  
...  

AbstractCryogenic operation of the diamond surface-channel field-effect transistors (FETs) is investigated. Metal-insulator-semiconductor FETs (MISFETs) are fabricated using CaF2 as a gate insulator. MISFETs operate successfully even at 4.4 K. At low temperature, field-effect enhances the drain current, even if the surface holes become almost frozen-out. Channel mobility increases as temperature decreases to 4.4 K, which indicates the reduced phonon scattering.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 454
Author(s):  
You Wang ◽  
Yu Mao ◽  
Qizheng Ji ◽  
Ming Yang ◽  
Zhaonian Yang ◽  
...  

Gate-grounded tunnel field effect transistors (ggTFETs) are considered as basic electrostatic discharge (ESD) protection devices in TFET-integrated circuits. ESD test method of transmission line pulse is used to deeply analyze the current characteristics and working mechanism of Conventional TFET ESD impact. On this basis, a SiGe Source/Drain PNN (P+N+N+) tunnel field effect transistors (TFET) was proposed, which was simulated by Sentaurus technology computer aided design (TCAD) software. Simulation results showed that the trigger voltage of SiGe PNN TFET was 46.3% lower, and the failure current was 13.3% higher than Conventional TFET. After analyzing the simulation results, the parameters of the SiGe PNN TFET were optimized. The single current path of the SiGe PNN TFET was analyzed and explained in the case of gate grounding.


2021 ◽  
pp. 2101036
Author(s):  
Jiali Yi ◽  
Xingxia Sun ◽  
Chenguang Zhu ◽  
Shengman Li ◽  
Yong Liu ◽  
...  

1987 ◽  
Vol 65 (5) ◽  
pp. 1072-1078 ◽  
Author(s):  
Paul G. Glavina ◽  
D. Jed Harrison

The fabrication of ion sensitive field effect transistors (ISFET) and microelectrode arrays for use as chemical sensors using a commercial CMOS fabrication process is described. The commercial technology is readily available through the Canadian Microelectronics Corporation; however, several of the recommended design rules must be ignored in preparing chemical sensors using this process. The ISFET devices show near theoretical response to K+ in aqueous solution (55 mV slope) when coated with a K+ sensitive membrane. An extended gate ion sensitive device is presented which offers advantages in encapsulation of ISFET sensors. The source-drain current of both devices show a linear response to log [Formula: see text] in contrast to ISFETs previously reported that have high internal lead resistances. Al and poly-Si microelectrode arrays are fabricated commercially and then Pt is electrodeposited on the microelectrodes. The resulting arrays show good cyclic voltammetric response to Fe(CN)64− and Ru(NH3)63+ and are relatively durable.


Sign in / Sign up

Export Citation Format

Share Document