Study on Burr Formation in Face Milling of Stainless Steel with Chamfered Cutting Tool

2008 ◽  
Vol 53-54 ◽  
pp. 83-88 ◽  
Author(s):  
Lu Lu Jing ◽  
Qing Long An ◽  
Ming Chen

Due to the properties such as high strength and high toughness, burr was commonly produced in the machining of stainless steel 1Cr18Ni9Ti, especially when a chamfered cutting tool was used. This study investigated the effects of chamfering geometry of cutting edge and machining parameters on burr formation and presented active control methods to minimize burr size on the exit end based on the experimental research in milling of 1Cr18Ni9Ti. Experiments of face milling with various cutting edge geometric features were conducted. Maximum height and thickness of exit burr and exit side burr were measured. As a result, a proper chamfering geometry that combined the advantages of enhancing the cutting edge strength and obtaining favorable burr types was presented. The experimental results also showed that a relatively high cutting speed was helpful in reducing burr formation; proper medium feed rate and axial depth were favorable for the minimization of burr size. This research is beneficial for precise machining of stainless steel.

2012 ◽  
Vol 723 ◽  
pp. 35-40 ◽  
Author(s):  
Han Lian Liu ◽  
Qing Ge Zhang ◽  
Chuan Zhen Huang ◽  
Bin Zou ◽  
Hong Tao Zhu

Based on the characteristics of austenitic stainless steel 1Cr18Ni9Ti, aiming to decrease surface roughness and milling force orthogonal face milling experiment with four factors and four levels was designed to optimize machining parameters with consideration of material removal rate. Three relatively excellent machining parameters were taken to further figure out the influences of cutting speed on tool life, and the tool wear mechanism was also analyzed. The results indicated that both surface roughness and milling force were greatly influenced by cutting speed and feed. The best machining parameters obtained in the experiments were v: 200m/min, fz: 0.1mm/z, ap: 0.9mm, ae: 35mm. The main tool failure mode under this circumstance was tool chipping at the flank between main cutting edge and surface to be processed, besides, the wear of rake face was relatively slight.


A finite element based numerical model to simulate orthogonal machining process and associated burr formation process has been developed in the presented work. To incorporate simultaneous effects of mechanical and thermal loadings in high speed machining processes, Johnson and Cook`s thermo-visco-plastic flow stress model has been adopted in the conceived numerical model. A coupled damage-fracture energy approach has been used to observe damage evolution in workpiece and to serve as chip separation criterion. Simulation results concerning chip morphology, nodal temperatures, cutting forces and end (exit) burr have been recorded. Model has been validated by comparing chip morphology and cutting force results with experimental findings in the published literature. Effects of cutting edge geometries [Hone and Chamfer (T-land)] on burr formation have been investigated thoroughly and discussed in length. To propose optimum tool edge geometries for reduced burr formation in machining of an aerospace grade aluminum alloy AA2024, numerical analyses considering multiple combinations of cutting speed (two variations), feed (two variations) and tool edge geometries [Hone edge (two variations), Chamfer edge (four variations)] have been performed. For chamfer cutting edge, the “chamfer length” has been identified as the most influential macro geometrical parameter in enhancing the burr formation. Conversely, “chamfer angle” variation has been found least effecting the burr generation phenomenon.


2015 ◽  
Vol 760 ◽  
pp. 433-438 ◽  
Author(s):  
Ovidiu Blăjină ◽  
Aurelian Vlase ◽  
Marius Iacob

The research in the last decade regarding their cutting machinability have highlighted the insufficiency of the data for establishing of the optimum cutting processing conditions and the optimum cutting regime. The purpose of this paper is the optimization of the tool life and the cutting speed at the drilling of the stainless steels in terms of the maximum productivity. A nonlinear programming mathematical model to maximize the productivity at the drilling of a stainless steel is developed in this paper. The optimum cutting tool life and the associated cutting tool speed are obtained by solving the proposed mathematical model. The use of this productivity model allows greater accuracy in the prediction of the productivity for the drilling of a certain stainless steel and getting the optimum tool life and the optimum cutting speed for the maximum productivity. The obtained results can be used in production activity, in order to increase the productivity of the stainless steels machining. Finally the paper suggests new research directions for the specialists interested in this field.


2013 ◽  
Vol 837 ◽  
pp. 28-32
Author(s):  
Ovidiu Blăjină ◽  
Aurelian Vlase ◽  
Vlad Darie

The research in the last decade regarding their cutting machinability have highlighted the insufficiency of the data for establishing of the optimum cutting processing conditions and the optimum cutting regime. The purpose of this paper is the optimization of the tool life and the cutting speed at the drilling of the stainless steels in terms of the maximum productivity. A nonlinear programming model to maximize the productivity at the drilling of a stainless steel is developed in this paper. The optimum cutting tool life and the associated cutting tool speed are obtained by solving the proposed mathematical model. The use of this productivity model allows greater accuracy in the prediction of the productivity for the drilling of a certain stainless steel and getting the optimum tool life and the optimum cutting speed for the maximum productivity. The obtained results can be used in production activity, in order to increase the productivity of the stainless steels machining. Finally the paper suggests new research directions for the specialists interested in this field.


2016 ◽  
Vol 874 ◽  
pp. 487-491
Author(s):  
Takayuki Kitajima ◽  
Takumi Horiuchi ◽  
Akinori Yui ◽  
Yosuke Ito

Carbon-fiber-reinforced plastic (CFRP) is used in various industries such as aerospace and automobile industries because of its high mechanical characteristics. However, this material is difficult to cut. Tool wear and delamination frequently occur during the drilling or cutting of CFRP. In previous studies, we developed a CFRP cutting tool using polycrystalline diamond (PCD). The PCD tool exhibited excellent cutting performance at cutting speeds as low as <120 m/min. In this study, the authors investigated the effect of cutting speed on the face milling of CFRP by using the developed PCD tool.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 9 ◽  
Author(s):  
Andrzej Matras

The paper studies the potential to improve the surface roughness in parts manufactured in the Selective Laser Melting (SLM) process by using additional milling. The studied process was machining of samples made of the AlSi10Mg alloy powder. The simultaneous impacts of the laser scanning speed of the SLM process and the machining parameters of the milling process (such as the feed rate and milling width) on the surface roughness were analyzed. A mathematical model was created as a basis for optimizing the parameters of the studied processes and for selecting the sets of optimum solutions. As a result of the research, surface with low roughness (Ra = 0.14 μm, Rz = 1.1 μm) was obtained after the face milling. The performed milling allowed to reduce more than 20-fold the roughness of the SLM sample surfaces. The feed rate and the cutting width increase resulted in the surface roughness deterioration. Some milled surfaces were damaged by the chip adjoining to the rake face of the cutting tool back tooth.


2012 ◽  
Vol 523-524 ◽  
pp. 215-219 ◽  
Author(s):  
Mohammad Ali Kadivar ◽  
Javad Akbari ◽  
Reza Yousefi

Burr in drilling plays an important role on product quality, so analysis the burr size is essential at the final production. This paper presents the application of Taguchi method for survey the burr height and burr thickness by adding ultrasonic vibration to the process. In this paper L18 orthogonal array based on Taguchi techniques was used in the design of experiments. Analysis of Variance (ANOVA) was used to determination the effect of drilling parameter on burr formation. Influence of cutting speed, feed rate and percentage of SiC particle was investigated in with and without Ultrasonic assisted drilling. Al/SiCp MMC with 5, 15 and 20 wt% of particulate SiC in dry drilling operation with TiN coated drill tools were investigated.


2012 ◽  
Vol 622-623 ◽  
pp. 352-356 ◽  
Author(s):  
Peter Monka

The paper deals with the experiments realized by means of cutting tool with linear cutting edge not parallel with the axis of the workpiece in order to be observed the suitable values of surface roughness characteristics in dependency on the feed and cutting speed. During experiments were machined three types of steels. Acquired data were statistical processed by regression analysis. The results of the measurements show that the investigated cutting tool enables to secure the same values of surface profile characteristics of steels as a classical cutting tool at finishing with the significant increase of the feed per revolution. It directly influences length of the technological operation time which is several times shortened and so the machining productivity can increase.


Author(s):  
Y. Zedan ◽  
S. A. Niknam ◽  
A. Djebara ◽  
V. Songmene

The burr formation mechanisms strongly depend on the machining methods as well as cutting conditions. Cutting fluids play significant roles in machining, including reduction of friction and temperature. Using a cutting fluid, however, degrades the quality of the environment and increases machining costs. In the present work, initially the effects of cutting fluid application (dry, mist and flood) and their interaction with cutting parameters on the burr size during drilling of 6061-T6 aluminum alloys were investigated using multi-level full factorial design. Second-order non-linear mathematical models were developed to predict burr height for various lubrication modes. The accuracy of the regression equations formulated to predict burr height when using different lubrication modes has been verified through carrying out random experiments in the range of variation of these variables. A procedure was developed to minimize burr size for drilling holes by presenting the optimal levels of process parameters. Taguchi optimization method based on L9 orthogonal array design of experiment was then used which has shown very accurate process parameters selection that leads to minimum burr height. According to experimental study, it was observed that dry and mist drilling can produce parts with quality comparable with those obtained in wet drilling when using the optimal cutting conditions. In addition, increase in cutting speed and feed rate exhibits a decrease in burr size.


Author(s):  
Rusdi Nur ◽  
MY Noordin ◽  
S Izman ◽  
D Kurniawan

Austenitic stainless steel AISI 316L is used in many applications, including chemical industry, nuclear power plants, and medical devices, because of its high mechanical properties and corrosion resistance. Machinability study on the stainless steel is of interest. Toward sustainable manufacturing, this study also includes the power consumption during machining along with other machining responses of cutting force, surface roughness, and tool life. Turning on the stainless steel was performed using coated carbide tool without using cutting fluid. The turning was performed at various cutting speeds (90, 150, and 210 m/min) and feeds (0.10, 0.16, and 0.22 mm/rev). Response surface methodology was adopted in designing the experiments to quantify the effect of cutting speed and feed on the machining responses. It was found that cutting speed was proportional to power consumption and was inversely proportional to tool life, and showed no significant effect on the cutting force and the surface roughness. Feed was proportional to cutting force, power consumption, and surface roughness and was inversely proportional to tool life. Empirical equations developed from the results for all machining responses were shown to be useful in determining the optimum cutting parameters range.


Sign in / Sign up

Export Citation Format

Share Document