Dielectric Properties of PVDF-TrFE/PMMA: TiO2 Multilayer Dielectric Thin Films

2012 ◽  
Vol 576 ◽  
pp. 582-585 ◽  
Author(s):  
Ismail Lyly Nyl ◽  
Mohamad Hafiz Mohd Wahid ◽  
Zulkefle Habibah ◽  
Sukreen Hana Herman ◽  
Mohamad Rusop Mahmood

This paper reports on the dielectric properties of multilayer PVDF-TrFE/PMMA:TiO2 thin film. Two samples were fabricated on ITO substrates; one with PVDF-TrFE only and another PMMA:TiO2 on PVDF-TrFE on (PVDF-TrFE/PMMA:TiO2). Both samples were produced by spin coating method. Dielectric properties were characterized using impedance spectroscopic. Dielectric constant, k, capacitance and dielectric loss, tan δ values of PMMA:TiO2/PVDF-TrFE were measured in the frequency range 0 – 50 kHz. The result for dielectric loss did not show any significant different between the samples with and without nanocomposite PVDF-TrFE layer. However, the dielectric constant are affected when depositing a nanocomposite PVDF-TrFE layer on PMMA:TiO2. The dielectric constant is decreased by 0.3 from 7.9 to 7.6.

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Soumya Sundar Pattanayak ◽  
Soumen Biswas

Abstract The quality of agricultural products can be remotely sensed and enhanced by determining the dielectric properties. This paper studies the dielectric properties of banana leaf and banana peel over the frequency range 1–20 GHz using the open-ended coaxial probe (OCP) method. A new curve fitting model is proposed to characterize the dielectric properties of banana leaf and banana peel. The different moisture content (MC) levels are considered for both banana leaf and banana peel samples and, their dielectric properties are characterized. Further, the banana leaf and banana peel’s measurement data are compared with the data obtained using the proposed model. In addition, Root Mean Square Error (RMSE) and R-squared (R 2) are calculated to validate the performance of the proposed model. In case of banana leaf at 68.26% MC, the dielectric constant achieves the value of R 2 and RMSE of 0.98 and 0.0648, respectively. Similarly, dielectric loss achieves the value of R 2 and RMSE of 0.88 and 0.0795, respectively. Further, for banana peel at 80.89% MC, the dielectric constant achieves the value of R 2 and RMSE of 0.99 and 0.2989, respectively. Similarly, dielectric loss achieves the value of R 2 and RMSE of 0.96 and 0.6132, respectively.


Author(s):  
Vishal Singh Chandel ◽  
Atiq UR Rahmanm ◽  
J. P. Shukla ◽  
Rajiv Manohar ◽  
Mohd. Shafi Khan

Effect of fungicides' (thiram, captan, carbendazim, bagalol) treatment on dielectric constant and dielectric loss of a vegetable seed, namely the brinjal at given moisture content and bulk density was examined using Hewlett-Packard (HP-4194A) impedance/gain phase analyzer over the frequency range of 0.01 to 10 MHz and temperature range of 30-450C. Julabo (temperature controller, F-25, Germany) was used for keeping the temperature of seeds constant. Study showed that fungicide treatment cast considerable change in dielectric parameters namely the dielectric constant and dielectric loss.


2011 ◽  
Vol 687 ◽  
pp. 251-256 ◽  
Author(s):  
Ying He ◽  
Huai Wu Zhang ◽  
Yuan Xun Li ◽  
Wei Wei Ling ◽  
Yun Yan Wang ◽  
...  

CaCu3Ti4O12 ceramics doped with 0-2.0 wt% Li2CO3 were prepared by the solid-state reaction, and their electric and dielectric properties were investigated. It is found that these ceramics had the properties of high dielectric constant and comparatively low dielectric loss. At the doping amount of 0.5 wt%, the dielectric constant is kept to be 105 with weak frequency dependence below 105 Hz, and its loss tangent (tan δ) is suppressed below 0.1 between 300 Hz-5 kHz (with the minimum value of 0.06 at 1 kHz from 218 K to 338 K). The impedance spectroscopy analysis confirms that the decrease of dielectric loss is mainly due to the increase of resistance in the grain boundary, which may be related to the influence of Ti4O7 secondary phase. Our result indicates that doping Li2CO3 is an efficient method to optimize the dielectric properties of CaCu3Ti4O12.


2013 ◽  
Vol 209 ◽  
pp. 14-17
Author(s):  
Basavaraja Sannakki ◽  
Anita Gandhe ◽  
V.H. Doddamani

Abstract. The PMMA with Fe2O3+ Al2O3 films at different weight percent have been used for measurement of dielectric properties such as dielectric constant, dielectric loss and a. c. conductivity as a function of frequency over the range 50 Hz – 5 MHz at room temperature. The dielectric constant and the dielectric loss (tan δ) of the polymer composite films decreases exponentially at lower frequencies over the range 100 Hz-1 kHz, where as above 1 kHz the values of dielectric constant remains same. But, it has been observed that the value of dielectric constant of PMMA composite films with Fe2O3+ Al2O3 increases as weight percent of Fe2O3+ Al2O3 increases. The a c conductivity of the polymer composite films remains constant over the frequency range 50 Hz to 300 K Hz and afterwards it increases exponentially. Further, PMMA with Fe2O3+ Al2O3 have been characterized using X-Ray diffractometer for the crystallinity. The morphological studies have been made using the FESEM.


2014 ◽  
Vol 66 (1) ◽  
pp. 17-28 ◽  
Author(s):  
Mohd. Shafi Khan ◽  
Vishal Singh Chandel ◽  
Rajiv Manohar ◽  
Jagdeesh Prasad Shukla

Abstract The present paper studied the dielectric constant, dielectric loss, and ac conductivity of fenugreek seed, a medicinal seed (Trigonella foenum graecum), within the frequency range of 10 kHz and 10 MHz and the temperature range of 30°C and 50°C. Impedance gain/phase analyser (HP 4194 A) was used to measure the dielectric constant and the dielectric loss and Julabo (temperature controller, F-25, Germany) was used for keeping the temperature of fenugreek seeds constant. It was found that the dielectric constant and the dielectric loss decrease with the increase in the frequency while the same increase with the increase in temperature and moisture content. The ac conductivity increased with the increase in frequency, moisture and temperature.


Author(s):  
K.Ch. Varada Rajulu ◽  
B.N. Mohanty

This study presents the dielectric and conductivity properties as function of temperature and frequency of wood based composites. These properties were measured by an open-ended coaxial probe at frequency range between 100 kHz to 100MHz, temperature from 30OC to 200OC which is fully computer interfaced. It has been observed that dielectric constant (ε') and dielectric loss factor (ε") increase with increasing temperature and decrease with increasing frequency. At low temperature region, the conductivity depends significantly on the frequency. However, with the increase in temperature dielectric relaxation takes place and the dependency of the conductivity on frequency get reduced. The patterns of variation were established for the studied specimens and discrepancies were discussed. The study of dielectric properties will help in improving the drying, heating and gluing processes of wood and wood based products.


2012 ◽  
Vol 16 (07n08) ◽  
pp. 826-832 ◽  
Author(s):  
Mevlüde Canlıca ◽  
Ahmet Altındal ◽  
Tebello Nyokong

The synthesis of ball-type dinuclear Zn(II) phthalocyanine containing four 4,4′-(9H-fluorene-9,9-diyl)diphenol substituents at the non-peripheral position is presented. The structure of the synthesized compound was characterized using elemental analyzes, and UV-vis, FT-IR,1H NMR and mass spectroscopies. The ΦFvalue was 0.16 and ΦTvalue was 0.72. The complex showed reasonably long triplet lifetimes with τT7210 μs in DMSO. The frequency and temperature dependence of the dielectric properties of ZnPc were also investigated in the frequency range of 40–105Hz and in the temperature range of 300–440 °K. It has been observed that both dielectric constant ε′ and dielectric loss ε″ decrease with the rise in frequency as they increase with the rise in temperature. The decrease in ε′ with increasing frequency is attributed to the fact that as the frequency increases, the polarizability contribution from orientation sources decreases and finally disappears.


2015 ◽  
Vol 1107 ◽  
pp. 38-44
Author(s):  
Wong Yick Jeng ◽  
Hassan Jumiah ◽  
Mansor Hashim

The CaTiO3samples were prepared by high-energy ball milling process followed by sintering process from 1040 to 1200°C. X-ray diffraction (XRD), microstructural analysis, and dielectric properties over a wide range of frequency varying from 0.01 Hz to 1 GHz at room temperature were investigated. The formation of a single phase CaTiO3with orthorhombic structure was achieved at 1120°C and above. From a morphological point of view, sintering temperature promoted grain growth. Dielectric properties in the frequency range 0.01 Hz - 1 MHz revealed a relaxation-type process. Interfacial phenomena were the possible physical mechanisms that gave rise to these relaxation-type plots. Extending the frequencies above ~1 MHz yielded a frequency-independent characteristic of dielectric constant (ε'). These turned out to the relatively small dielectric loss (tan δ) values. The origin of the dielectric responses in the frequency range 1 MHz - 1 GHz was attributed to the domination of dipolar polarization. The grain size effect in sintered CaTiO3samples was prominent, notably in dielectric responses above ~1 MHz. Increase in sintering temperature remarkably led to an enhancement in dielectric constant values and reduction in dielectric loss values. Therefore, a significant correlation existed between microstructural features and dielectric properties.


2009 ◽  
Vol 66 ◽  
pp. 234-237 ◽  
Author(s):  
Hao Yan ◽  
Zhi Xiong Huang ◽  
Yan Bing Wang

The Magnesium Niobate-Lead Titanate (PMN) / conductive carbon black (CB)/ chlorobutyl rubber(CIIR) composites were prepared by blending-vulcanization method, and the dielectric properties were studied. The results showed that the dielectric constant and dielectric loss of composites increased nonlinearly when increasing the content of PMN or CB. From the curve of dielectric constant vs frequency, it is obtained that in the frequency range from 103 to 106 Hz, the dielectric constant of PMN/CB/CIIR composites decreased with the frequency increasing and the dielectric constants are more stable under high frequency.


Clay Minerals ◽  
2014 ◽  
Vol 49 (4) ◽  
pp. 551-558
Author(s):  
S. Gümüştas ◽  
K. Köseoğlu ◽  
E. E. Yalçinkaya ◽  
M. Balcan

AbstractThe purpose of this paper is to determine the effect of NaF and firing temperature on the dielectric properties (dielectric constant and dielectric loss) of talc, which is used in the electrical and electronic industries as a circuit element. A detailed characterization of the samples was made by XRD, FTIR, SEM and TG-DTG methods. Dielectric measurements were performed in the frequency range from 1 MHz to 80 MHz at room temperature. The dielectric constant value increased with an increase in firing temperature due to the removal of polarizable compounds from the talc structure. The higher dielectric constant values were obtained by addition of NaF. The dielectric loss of NaF doped talc decreased with the increase of firing temperature and increased with the increase of the amount of NaF.


Sign in / Sign up

Export Citation Format

Share Document