The Study of Copper (II) Removal from Aqueous Solutions by Adsorption Using Corn Stalk Material

2012 ◽  
Vol 610-613 ◽  
pp. 1950-1953
Author(s):  
Zheng Jun Gong ◽  
Wenbo Zhou ◽  
Zhong Ping Qiu

In this study, removal of copper(Ⅱ) from aqueous solutions was examined using corn stalk. In the batch mode adsorption studies, the effects of initial pH and contact time on the copper(Ⅱ) adsorption by the corn stalk have been studied. The results show that: the pH 6.0 and contact time 8 hrs is optimum conditions of this absorption process when the dosage of corn stalk is 0.1g. In the isotherm studies, the Langmuir and Freundlich isotherm models were applied. The R2 of the Langmuir and Freundlich isotherm are 0.981 and 0.944 respectively. The Langmuir adsorption capacity Qmax is 54.05 mg/g. The goodness of fitness was obtained with the Langmuir and Freundlich adsorption isotherms.

Author(s):  
T. E. Bektaş ◽  
B. K. Uğurluoğlu ◽  
B. Tan

Abstract Water with phosphate concentrations above 2 μM may adversely affect aquatic life and human health. In this study, the parameters affecting phosphate removal from aqueous solutions by ion exchange were investigated – contact time and temperature, initial pH, initial phosphate concentration and resin dosage, and the presence of other ions. The best phosphate removal (99%) from 100 mg-P/L initial solution was observed at pH 10 and 25 °C after 3 hours of contact time. No negative phosphate removal results were obtained from phosphate solutions containing sulfate, nitrate and ammonium ions, i.e., resembling real wastewater. Desorption (with NaOH or NaCl) and recovery (with CaO) studies of phosphate sorbed by resin were also carried out, as well as thermodynamic investigations. The proportional desorbability of phosphate from the resin with NaCl was 85.6%. The recovery efficiency of phosphate was 79.4%. The sorption process was spontaneous and endothermic. The ion exchange mechanism was determined using different internal and external diffusion models. The mechanism controlling the removal of phosphate from aqueous solution is both internal and external diffusion. Application of the Langmuir and Freundlich isotherm models showed that the experimental results fit well with the Freundlich model.


2014 ◽  
Vol 556-562 ◽  
pp. 282-285
Author(s):  
Li Fang Zhang ◽  
Zhao Shao ◽  
Chun Yang Jiang

In this study, Biosorption of Ni (II) ions from aqueous solution by using biomass ofAspergillusnigerwas investigated. Different parameters such as initial pH, Ni (II) ions concentration, contact time and temperature were explored. The biosorption of Ni (II) ions was highly pH dependent and the optimum pH for biosorption of Ni (II) ions was found to be 7.0. The biosorption equilibrium was established in about 30min of contact time. Ni (II) ions removal increased with increasing temperature in the studied range. Equilibrium uptake of Ni (II) ions onto biomass increased with increasing initial Ni (II) ions concentration (20-300mg/L). The Langmuir and Freundlich isotherm models were applied to experimental equilibrium data and the Langmuir model better described the equilibrium metal uptake than the Freundlich model. These results suggest that the biomass ofAspergillusnigeris a promising biosorbent for removal of nickel (II) ions from the wastewater.


2016 ◽  
Vol 11 (7) ◽  
pp. 3777-3788 ◽  
Author(s):  
H. Dashti Khavidaki ◽  
M. H. Fekri

In this study, the adsorption of thallium (I) ion as a dangerous pollutant from aqueous solution onto modified ZnO nanopowder as a fairly cheap adsorbent has been examined in batch mode. It was known that modification of the adsorbent was necessary to reach a significant adsorption percentage. The adsorbent used here was modified by sodium phosphate solution. The effect of experimental conditions such as initial pH of solution, contact time, adsorbent dosage, initial concentration of thallium and temperature is studied. The results showed the dependence of the adsorption percentage to these conditions specially its pH. The maximum adsorption percentage of Tl (I) ions at 25±1oC was 92.8%. Freundlich isotherm model provided a better fit with the experimental data than Langmuir and Temkin isotherm models by high correlation. Separation factor, RL, values showed that modified ZnO nanopowder was favorable for the adsorption of Tl (I) ion. The negative value of ΔH0 showed that Tl (I) sorption is an exothermic process and the negative value of ΔS0 represented that there is a little decrease of randomness at the solid-solution interface during sorption.


2019 ◽  
Vol 79 (4) ◽  
pp. 627-634 ◽  
Author(s):  
Q. H. Dai ◽  
X. Y. Bian ◽  
R. Li ◽  
C. B. Jiang ◽  
J. M. Ge ◽  
...  

Abstract The biosorption of Pb(II) from aqueous solutions by lactic acid bacterium, Lactobacillus brevis, was studied. The effects of initial pH, contact time, initial Pb(II) concentration, bacterial concentration, rotation speed and temperature of biosorption of Pb(II) from aqueous solutions were investigated. The optimal condition for Pb2+ ions adsorption was observed at pH 6, with the rotational speed of 120 rpm.min−1, bacterial concentration of 3 g.L−1, temperature of 40 °C and contact time of 12 h. The correlation regression coefficients showed that the biosorption process can be well fitted with the Redlich-Peterson, Langmuir, Freundlich and Temkin isotherm models. The equilibrium adsorption capacity reached 53.632 mg.g−1. Binding energy value was 0.264 kJ/mol, which indicated that the adsorption process seemed to involve chemisorption and physisorption. Kinetics of adsorption was found to fit well with the pseudo-second-order and Elovich kinetic equations. Thermodynamic parameters revealed the feasibility, spontaneity and endothermic nature of adsorption.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ferdos Kord Mostafapour ◽  
Edris Bazrafshan ◽  
Mahdi Farzadkia ◽  
Samira Amini

Arsenic is a naturally occurring metalloid, which is widely distributed in nature and is regarded as the largest mass poisoning in history. In the present study, the adsorption potential ofSalvadora persica(S. persica) stem ash in a batch system for the removal of As(V) from aqueous solutions was investigated. Isotherm studies were carried out to evaluate the effect of contact time (20–240 min), pH (2–11), initial arsenic concentration (50–500 μg/L), and adsorbent dose on sorption efficiency. Maximum removal efficiency of 98.33% and 99.32% was obtained at pH 6, adsorbent dosage 3.5 g/L, initial As(V) concentration 500 μg/L, and contact time 80 and 60 min forS. persicastem ash at 300 °C and 500 °C, respectively. Also, the adsorption equilibriums were analyzed by the Langmuir and Freundlich isotherm models. Such equilibriums showed that the adsorption data was well fitted with the Freundlich isotherm model forS. persicastem ash at both 300 °C and 500 °C (R2=0.8983and 0.9274, resp.). According to achieved results, it was defined thatS. persicastem ash can be used effectively for As(V) removal from the aqueous environment.


2009 ◽  
Vol 6 (4) ◽  
pp. 1109-1116 ◽  
Author(s):  
S. Madhavakrishnan ◽  
K. Manickavasagam ◽  
R. Vasanthakumar ◽  
K. Rasappan ◽  
R. Mohanraj ◽  
...  

Carbon prepared fromRicinus CommunisPericarp (RCP) was used to remove a crystal violet dye from aqueous solution by an adsorption technique under varying conditions of agitation time, dye concentration, adsorbent dose and pH. Adsorption is influenced by pH, dye concentration, carbon concentration and contact time. Equilibrium was attained with in 60 min. Adsorption followed both Langmuir and Freundlich isotherm models. The adsorption capacity was found to be 48.0 mg/g at an initial pH of 6.8±0.2 for the particle size of 125–250 μm.


2015 ◽  
Vol 8 (2) ◽  
pp. 189
Author(s):  
Zulkarnain Chaidir ◽  
Qomariah Hasanah ◽  
Qomariah Hasanah ◽  
Rahmiana Zein ◽  
Rahmiana Zein

Jengkol shells (Pithecellobium jiringa) an agricultural waste from typical Indonesian plant has been investigated for its ability to absorb heavy metal ions Cr VI and Cr III . Effect of pH, concentration, contact time, mass and the speed of stirring biosorben studied by extraction method. Concentration of metal ions Cr VI and Cr III was measured using Atomic Absorption Spectrophotometer (AAS). The optimum conditions for metal ion uptake of Cr VI occurs at pH 4, the concentration of 7000 mg/L, contact time of 60 minutes, 0.1 g biosorben mass and stirring speed 100 rpm. For the metal ions Cr III wa obtained conditions optimum at pH 5, the concentration of 1500 mg/L,  contact time of 60 minutes, 0.1 g biosorben mass and stirring speed 100 rpm. Functional groups contained in the jengkol shells analyzed by Fourier Transform Infra Red (FTIR). Data equilibrium uptake of metal ions Cr VI and Cr III  by the jengkol shells analyzed using two isotherm models , namely Langmuir and Freundlich isotherm models . The absorption of both the metal ions tend to follow the Langmuir isotherm models in which the absorption capacity of metal ions obtained for Cr VI ) and Cr  III  is 24.9376 mg / g and 39. 0625 mg /g . The optimum condition was applied to study the river Batang Arau at Padang city obtained a capacity of 15.065 mg/ g with 45 efficiency, 94 % for the uptake of metal ions Cr (total).


2002 ◽  
Vol 20 (4) ◽  
pp. 393-416 ◽  
Author(s):  
Fawzi Banat ◽  
Sameer Al-Asheh ◽  
Dheaya‘ Al-Rousan

This study examined and compared the ability of chicken feathers, human hair and animal horns, as keratin-composed biosorbents, for the removal of Zn2+ and Cu2+ ions from single metal ion aqueous solutions under different operating conditions. The three biosorbents investigated in this study were all capable of adsorbing Zn2+ and Cu2+ ions from aqueous solutions. The biosorbent showing the highest uptake of Zn2+ and Cu2+ ions was animal horns. Chicken feathers showed a higher Cu2+ ion uptake and a lower Zn2+ ion compared to human hair. Increasing the initial concentration of Zn2+ or Cu2+ ions, or increasing the initial pH value, increased the metal ion uptake. Such uptake decreased when the temperature was raised from 25°C to 50°C for all adsorbent/metal ion combinations except for Zn2+ ion/human hair where the uptake increased with temperature. It was demonstrated that the addition of NaCl salt to the metal ion solution depressed the metal ion uptake. The Freundlich isotherm model was found to be applicable to the adsorption data for Cu2+ and Zn2+ ions.


2012 ◽  
Vol 66 (8) ◽  
pp. 1699-1707 ◽  
Author(s):  
A. K. Giri ◽  
R. K. Patel ◽  
P. C. Mishra

In this work, the biosorption of As(V) from aqueous solutions by living cells of Bacillus cereus has been reported. The batch biosorption experiments were conducted with respect to biosorbent dosage 0.5 to 15 g/L, pH 2 to 9, contact time 5 to 90 min, initial concentration 1 to 10 mg/L and temperature 10 to 40 °C. The maximum biosorption capacity of B. cereus for As(V) was found to be 30.04 at pH 7.0, at optimum conditions of contact time of 30 min, biomass dosage of 6 g/L, and temperature of 30 ± 2 °C. Biosorption data were fitted to linearly transformed Langmuir isotherms with R2 (correlation coefficient) >0.99. Bacillus cereus cell surface was characterized using AFM and FTIR. The metal ions were desorbed from B. cereus using both 1 M HCl and 1 M HNO3. The pseudo-second-order model was successfully applied to predict the rate constant of biosorption.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
H. Nourmoradi ◽  
Mehdi Khiadani ◽  
M. Nikaeen

Multicomponent adsorption of benzene, toluene, ethylbenzene, and xylene (BTEX) was assessed in aqueous solutions by montmorillonite modified with tetradecyl trimethyl ammonium bromide (TTAB-Mt). Batch experiments were conducted to determine the influences of parameters including loading rates of surfactant, contact time, pH, adsorbate concentration, and temperature on the adsorption efficiency. Scanning electron microscope (SEM) and X-ray diffractometer (XRD) were used to determine the adsorbent properties. Results showed that the modification of the adsorbent via the surfactant causes structural changes of the adsorbent. It was found that the optimum adsorption condition achieves with the surfactant loading rate of 200% of the cation exchange capacity (CEC) of the adsorbent for a period of 24 h. The sorption of BTEX by TTAB-Mt was in the order ofB<T<E<X. The experimental data were fitted by many kinetic and isotherm models. The results also showed that the pseudo-second-order kinetic model and Freundlich isotherm model could, respectively, be fitted to the experimental data better than other available kinetic and isotherm models. The thermodynamic study indicated that the sorption of BTEX with TTAB-Mt was achieved spontaneously and the adsorption process was endothermic as well as physical in nature. The regeneration results of the adsorbent also showed that the adsorption capacity of adsorbent after one use was 51% to 70% of original TTAB-Mt.


Sign in / Sign up

Export Citation Format

Share Document