The Dependence on Temperature of Carbonization and Chemical Activation on Characteristics of Granular Activated Carbon Characteristics

2009 ◽  
Vol 62-64 ◽  
pp. 398-403 ◽  
Author(s):  
C.O. Okieimen ◽  
S.E. Ogbeide

Nigeria imports large quantities of activated carbon annually for local use. In this study the development of low cost and effective adsorbent from the palm kernel shell for the treatment of waste water is examined.Palm kernel shells were used to produce activated carbon by carbonization at different temperatures (500 -10000C) and by chemical activation using 1M citric acid and saturated ammonium chloride as activated agents. The optimum temperature of carbonisation was found to be 950oC, the activated carbons produced were characterized. The measured characteristics: yield, pH, bulk density, surface area, porosity, resistance to mechanical abrasion and total surface charge of the activated carbon prepared from palm kernel shell were 18.6%, 7.8, 0.636g/ml, 112.09mgl2/gC, 19.23%, 2.36molH+/gC respectively, for citric acid activated carbon . For ammonium chloride activated carbon they were determined to be 17.50%, 8.55, 0.716g/ml, 109.69mgl2/gC, 19.76% and 2.06, 2.36molH+/gC respectively. The experimental results showed the possibility for the production of activated carbon with well developed pore structure, surface, and bulk density high mechanical abrasion and reasonable total surface charge.

2019 ◽  
Vol 5 (3) ◽  
pp. 43 ◽  
Author(s):  
Aloysius Akaangee Pam

In this present work, a novel method for synthesis of palm kernel shell activated carbon was established using DES (choline chloride/urea)/H3PO4 as the activating agent. The pore characterization, morphology, and adsorption properties of the activated carbons were investigated. The activated carbon samples made from the same feedstock at two pyrolysis temperatures (500 and 600 °C) were compared for their ability to adsorb Pb(II) in aqueous solution. The results demonstrated that the production of the activated carbon and adsorptive properties were significantly influenced by the pyrolysis temperature and the ratio of precursor to activating agent. DES/H3PO4 activated carbon (having surface area 1413 m2/g and total pore volume 0.6181 cm3/g) demonstrated good Pb(II) removal. Although all the tested activated carbon samples adsorbed Pb(II) from aqueous solution, they demonstrated different adsorption capabilities according to their various properties. The pyrolysis temperature, however, showed little influence on the activated carbon adsorption of Pb(II) when compared to the impregnation ratio. Their good desorption performance perhaps resulted from the porous structure.


2014 ◽  
Vol 705 ◽  
pp. 19-23
Author(s):  
Noor Shawal Nasri ◽  
Ramlan Noorshaheeda ◽  
Usman Dadum Hamza ◽  
Jibril Mohammed ◽  
Murtala Musa Ahmed ◽  
...  

Potential agro wastes (i.e palm kernel shell and coconut shell) for producing low cost activated carbon (AC) was investigated. In this study, the activated carbon was produced by carbonization, chemical impregnation with KOH and microwave irradiation. The pyrolysis was carried out at 700 °C in an inert environment for 2 h. Microwave activation was carried out at 400W for 6 minutes. Characteristics of the material were investigated using Fourier transform infrared spectroscopy (FT-IR) analysis and scanning electrode microscopy (SEM). Methane adsorption equilibrium data on the activated carbons produced were obtained using static volumetric method. Microwave palm shell activated carbon (MPAC) and microwave coconut shell activated carbon (MCAC) recorded highest methane uptake of 2.489 and 1.929 mmol/g at 3 bar, 30°C. The adsorption data were correlated with Langmuir and Freundlich isotherms. The results shows that microwave activated carbon from palm shell and coconut shell have good methane adsorption characteristics.


2018 ◽  
Vol 783 ◽  
pp. 109-114
Author(s):  
Nor Salmi Abdullah ◽  
Syazrin Syima Sharifuddin ◽  
Mohd. Hazwan Hussin

The adsorption ability of powdered activated carbons (PAC) derived from palm kernel shell (PKS) was investigated. PAC was prepared by chemical activation method using ZnCl2as an activating agents. The adsorption studies of Hg(II) was carried out under control condition with constant pH, solution temperature (30 °C), treatment time (90 min) and absorbent dosage (2.0 g L-1). It was revealed that PAC efficiently removed as much as 10 mg L-1of Hg(II) with the percentage of removal up to 97.7 %. Both Langmuir and Freundlich adsorption isotherms were used to explain the adsorption behavior. Freundlich model was found to be fitted well and favored multilayer adsorption. The kinetics data were fitted with pseudo-first order and pseudo-second order, and it was found to obeys the pseudo-second order kinetic order. Recent finding suggest that PKS has the potential to be a promising precursor for the production of activated carbon with the excellent adsorption capacity to remove Hg(II) from aqueous solution.


2017 ◽  
Vol 79 (7) ◽  
Author(s):  
Omar Abed Habeeb ◽  
Ramesh Kanthasamy ◽  
Gomaa A. M. Ali ◽  
Rosli Mohd. Yunus

Hydrogen sulfide (H2S) present in the industrial wastewater can be removed using activated carbon produced from palm kernel shell. In this study, three factors namely activation temperature, impregnation ratio of potassium hydroxide to precursor and activation contact time were investigated for the preparation of activated carbon from palm kernel shell (ACPKS) as an adsorbent toward removal of H2S from synthetic wastewater using central composite design (CCD). Chemical activation method was used to activate the adsorbent with different conditions using KOH as an activating agent. The batch mode was utilized for studying adsorption process. Two responses (removal efficiency (RE, %) and yield of adsorbent (Y, %) are tested by means of two quadratic models. The results shown that the optimum conditions for ACPKS preparation are activation temperature of 829.4 ̊C, KOH to precursor ratio of 3.01 w% and activation time of 85 min with responses of 94.41% RE and 39.4% of ACPKS yield. The study recommended that, ACPKS is the promising adsorbent for removing H2S from wastewater and other aqueous solutions.


2021 ◽  
Vol 21 (4) ◽  
pp. 920
Author(s):  
Muhammad Adlim ◽  
Ratu Fazlia Inda Rahmayani ◽  
Fitri Zarlaida ◽  
Latifah Hanum ◽  
Maily Rizki ◽  
...  

This study explored a simple preparation and characterization of the activated carbon and cloth from the palm kernel shell and compared it to the commercial-water-filter-carbon specification. A new pyrolysis chamber that is easily scaled up using the palm kernel shell itself as a heat source was tested. Two different steps were compared: the alkaline activation process performed before or after the carbonation process in the palm-kernel-shell carbon preparation. The palm-kernel-shell activated carbons prepared with the current method fulfilled the standard quality of activated charcoal except for the ash content. The sequencing step of the preparation affected the adsorption capacity. Instead of the reverse sequence, the soaking palm kernel shells in NaOH before the carbonation process lead to a higher adsorption capacity. The carbon particle stability on the cloth surface was affected by both the adhesive concentration and its size. The ammonia adsorption capacity of activated carbon cloth (ACC) was between 1–4 mg ammonia per g stuck carbon. The preparation and the carbon type source on ACC affected the adsorption capacity. The ACC absorbed and lessened the skim latex odor vapor, nearly odorless depending on the ACC area and the volume of odor vapor.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
F. T. Ademiluyi ◽  
E. O. David-West

The effect of chemical activation on the adsorption of metals ions (Cr2+, Cu2+, Ni2+, Pb2+, Fe2+, and Zn2+) using waste Nigerian based bamboo, coconut shell, and palm kernel shell was investigated. The bamboo, coconut, and palm kernel shell were carbonized at 400°C–500°C and activated at 800°C using six activating agents. Chemical activation had significant effect on the iodine number and invariably increased the micropores and macropores of the activated carbons produced from bamboo, coconut, and palm kernel shell. It also affected the adsorption of metal ions and the type of carboneous material used for activation. The highest metal ions adsorbed were obtained from bamboo activated with HNO3. The cellulose nitrite formed during the activation of bamboo with HNO3 combined with high pore volume and low ash content of bamboo effectively create more reaction sites for adsorption of different metal ions. This shows that waste bamboo activated with HNO3 can effectively be used to remove metal ions from waste streams and in different metal recovery processes than activated carbon from coconut shell and palm kernel shell.


2021 ◽  
Vol 8 (2) ◽  
pp. 1002-1019
Author(s):  
S M Anisuzzaman ◽  
Nirwana Sinring ◽  
Rachel Fran Mansa

This study aimed to produce palm kernel shell granular activated carbon (PKSGAC) from slow vacuum pyrolysed PKS biochar (PKSB) via chemical activation using a horizontal tubular split zone furnace. The study also investigated the effects of varying parameters of the PKSGAC on its colour removal ability. The PKSB was activated through chemical activation using potassium hydroxide (KOH) at various parameters such as activation temperature (700oC to 850oC), KOH concentration (50 % w/v to 100 % w/v) and particle size of PKSB (0.4 mm to 2.5 mm). The novelty of this work lies in the study of chemical activation on various particle size ranges using response surface methodology (RSM) to model the relationships between various parameters. The PKSB was characterized to determine its thermal condition, and the PKSGAC was characterized to determine the iodine number, bulk density, ash content, moisture content, surface area and morphology structure. The parameters that were used for each sample were determined by using the RSM based on central composite design (CCD). In this study, design expert version 11.0 software was used and three parameters as independent variables were manipulated. Finally, three different PKSGAC samples of different particle sizes were used to test for the methylene blue (MB) dye removal with the concentration of 5 mg/l, 10 mg/l, 15 mg/l and 20 mg/l. Thermal analysis showed that the total weight loss of the PKSB sample was 58.30% and for PKSGAC the range of the product yield as shown from the RSM was from 33.23% to 96.33%. The RSM also showed that the values for moisture content were in a range from 0% - 39%, as for the ash content value from 2% - 12%, while for the bulk density ranged from 0.17 g/cm3 - 0.50 g/cm3. The highest iodine value achieved was 1320 mg/g at activation temperature of 850oC, KOH concentration of 50% w/v and particle size of 0.4 mm. From the RSM, an iodine number of 1100 mg/g could be obtained using an activation temperature of 850oC, the KOH concentration of 69.22% w/v and the particle size of 0.59 mm. From the BET analysis, the PKSGAC sample obtained 581 m2/g for SBET and 0.3173 cm3/g for the Vtot. The highest percentage dye removal of MB dye was 89.61% to 97.63% at 775oC activation temperature, 75% w/v KOH concentration and 0.4 mm particle size. This work produced RSM models to predict the relationships between the parameters and the response, as well as the performance on MB dye removal.


2005 ◽  
Vol 40 (4) ◽  
pp. 484-490 ◽  
Author(s):  
Keun J. Choi ◽  
Sang G. Kim ◽  
Chang W. Kim ◽  
Seung H. Kim

Abstract This study examined the effect of polyphosphate on removal of endocrine-disrupting chemicals (EDCs) such as nonylphenol and bisphenol-A by activated carbons. It was found that polyphosphate aided in the removal of nonylphenol and bisphenol- A. Polyphosphate reacted with nonylphenol, likely through dipole-dipole interaction, which then improved the nonylphenol removal. Calcium interfered with this reaction by causing competition. It was found that polyphosphate could accumulate on carbon while treating a river. The accumulated polyphosphate then aided nonylphenol removal. The extent of accumulation was dependent on the type of carbon. The accumulation occurred more extensively with the wood-based used carbon than with the coal-based used carbon due to the surface charge of the carbon. The negatively charged wood-based carbon attracted the positively charged calcium-polyphosphate complex more strongly than the uncharged coal-based carbon. The polyphosphate-coated activated carbon was also effective in nonylphenol removal. The effect was different depending on the type of carbon. Polyphosphate readily attached onto the wood-based carbon due to its high affinity for polyphosphate. The attached polyphosphate then improved the nonylphenol removal. However, the coating failed to attach polyphosphate onto the coal-based carbon. The nonylphenol removal performance of the coal-based carbon remained unchanged after the polyphosphate coating.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2951
Author(s):  
Mirosław Kwiatkowski ◽  
Jarosław Serafin ◽  
Andy M. Booth ◽  
Beata Michalkiewicz

This paper presents the results of a computer analysis of the effect of activation process temperature on the development of the microporous structure of activated carbon derived from the leaves of common polypody (Polypodium vulgare) via chemical activation with phosphoric acid (H3PO4) at activation temperatures of 700, 800, and 900 °C. An unconventional approach to porous structure analysis, using the new numerical clustering-based adsorption analysis (LBET) method together with the implemented unique gas state equation, was used in this study. The LBET method is based on unique mathematical models that take into account, in addition to surface heterogeneity, the possibility of molecule clusters branching and the geometric and energy limitations of adsorbate cluster formation. It enabled us to determine a set of parameters comprehensively and reliably describing the porous structure of carbon material on the basis of the determined adsorption isotherm. Porous structure analyses using the LBET method were based on nitrogen (N2), carbon dioxide (CO2), and methane (CH4) adsorption isotherms determined for individual activated carbon. The analyses carried out showed the highest CO2 adsorption capacity for activated carbon obtained was at an activation temperature of 900 °C, a value only slightly higher than that obtained for activated carbon prepared at 700 °C, but the values of geometrical parameters determined for these activated carbons showed significant differences. The results of the analyses obtained with the LBET method were also compared with the results of iodine number analysis and the results obtained with the Brunauer–Emmett–Teller (BET), Dubinin–Radushkevich (DR), and quenched solid density functional theory (QSDFT) methods, demonstrating their complementarity.


Sign in / Sign up

Export Citation Format

Share Document