Researches on Microwave Dyeing Cotton Fabrics

2012 ◽  
Vol 627 ◽  
pp. 343-347 ◽  
Author(s):  
Ning Ning Lei ◽  
De Li Gong ◽  
Xiao Rui Ling ◽  
Yi Dong Shi

This experiment compared four different dyeing cotton fabrics processes with the reactive dye. It was found that under microwave irradiation dyeing, the dye-uptake and fixed percentage of the reactive dye were improved significantly and the salt and the alkali dosage in the dyeing bath were greatly reduced. Analysis found by XRD that microwave irradiation did not significantly change the internal structure of the cotton fibers and only slightly increased the orientation degree of them, so the tensile strength of the fabric was not significantly altered. Therefore, the main function of microwave in dyeing process was that its alternating electric field made the dye and the fiber molecule polarization, to increase the thermal motion of the molecules and the interaction between the polar molecules, thereby improving the dyeing rate and the fixing rate of the reactive dye.

2019 ◽  
Vol 14 ◽  
pp. 155892501988447
Author(s):  
Subashini Balakrishnan ◽  
GL Dharmasri Wickramasinghe ◽  
UG Samudrika Wijayapala

The objective of this research paper is to establish a suitable reactive dyeing process for banana fiber and comparison between dyeing behaviors of banana fibers with cotton fibers. Ambon (Cavendish type) banana variety was selected for this research study. Data accumulation is done by quantitative research methodology and experimental research strategies for this investigation; 5% enzyme and 6% H2O2-, 2% Na2SiO3-, and 3% NaOH-treated banana fibers were dyed with reactive dye. Banana fibers were dyed with three standard colors (red, blue, and yellow) each with four different concentrations (0.25, 1%, 4%, and 6%) of reactive dye. Testing was conducted to assess the color properties between pretreated banana fiber, dyed banana fiber, and cotton fiber. Color measurement was performed by using a Datacolour 600 spectrophotometers. The ΔE* values were used to determine the degree of color deterioration. Results showed that pretreated fibers become brighter (whiteness) than the raw banana fibers. Reflectance curves of dyed banana fibers were found similar to cotton in all the experiments and confirming the dye absorption tendency is more similar to cotton. Further results indicate that the dyeing behavior of banana is similar to cotton. Therefore, cotton dyeing process can be applied for the banana fibers. Dyeing of banana fiber was carried out with a reactive type of dye, which provided better washing fastness properties than cotton fibers.


2013 ◽  
Vol 787 ◽  
pp. 138-142 ◽  
Author(s):  
De Shuai Sun ◽  
Long Fang ◽  
Tao Liu

Ultrasound can promote the dye-uptake in the dyeing process. The effects of ultrasound on the fiber, dye and dyeing system were investigated by dyeing cotton fabrics with a direct dye. The dye exhaustion exceeded 80% in 30 minutes with the assistant of ultrasound. Langmuir adsorption model could descript the ultrasound dyeing process of direct dye. The area of fiber accessibility of cotton fiber increased 1.68 times under the action of ultrasound. The absorbance of direct dye solution increased remarkably in the first 10 minutes of ultrasound irradiation. Ultrasound accelerated the diffusion of dye on cotton fiber, and then the diffusion coefficient increased 46 times


2020 ◽  
Vol 90 (23-24) ◽  
pp. 2581-2591
Author(s):  
Chengbing Yu ◽  
Ziwei Xi ◽  
Yilin Lu ◽  
Kaixin Tao ◽  
Zhong Yi

Cotton is one of the world’s most common natural clothing materials. It is dyed mainly using the exhaustion, cold pad-batch, and pad-dry-pad-steam dyeing methods. The K/S value, an important index for measuring the depth of color, of cotton fabric dyed with reactive dyes is greatly influenced by various factors of the dyeing process. In this study, three models were developed incorporating least squares support vector machine (LSSVM) to predict the K/S values of dyed cotton fabrics, while particle swarm optimization (PSO) was applied to optimize and tune the parameters of the LSSVM model (PSO-LSSVM). Model inputs include dye concentration and process conditions, which are both easily obtainable variables. The K/S values from the PSO-LSSVM model are consistent with actual measured K/S values of dyed cotton fabrics. Moreover, a comparison among PSO-LSSVM, LSSVM and back propagation neural network results shows the superiority of the PSO-LSSVM approach. Results of this work indicate that a PSO-LSSVM model is a powerful tool for predicting the K/S value in cotton fabric dyed with reactive dye and thus a means to improve production processes and reduce costs.


2013 ◽  
Vol 821-822 ◽  
pp. 547-551
Author(s):  
Shu Hang Zhang ◽  
Hong Wei Li ◽  
Le Lv

Poly2-methyl acrylate-N-methyl pyridinium iodide (PMAMPI) was used as a new cationic agent to pretreat cotton with dip-pad-bake method. The pretreated cationic cotton showed electropositive in the process of dyeing with reactive dye. The thesis has studied the optimized process for salt-free dyeing conditions. In the optimized salt-free dyeing process, the cotton fabrics treated with PMAMPI showed a good performance compared to those in the process of traditional salt dyeing. The results showed that color yield and color fastness of the reactive dyes on the cationic cotton were satisfied. The three dyes with best color matching performance include reactive dark red WGE, reactive navy blue WTE and reactive golden yellow WRE.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lina Lin ◽  
Wenju Zhu ◽  
Cong Zhang ◽  
Md. Yousuf Hossain ◽  
Zubair Bin Sayed Oli ◽  
...  

AbstractThe conventional dyeing process requires a substantial amount of auxiliaries and water, which leaches hazardous colored effluents to the environment. Herein, a newly developed sustainable spray dyeing system has been proposed for cotton fabric in the presence of reactive dyes, which has the potential to minimize the textile dyeing industries environmental impact in terms of water consumption and save significant energy. The results suggest that fresh dye solution can be mixed with an alkali solution before spray dyeing to avoid the reactive dye hydrolysis phenomenon. After that, drying at 60–100 °C, wet fixation treating for 1–6 min, and combined treatments (wet fixation + drying) were sequentially investigated and then dye fixation percentages were around 63–65%, 52–70%, and above 80%, respectively. Following this, fixation conditions were optimized using L16 orthogonal designs, including wet fixation time, temperature, dye concentration, and pH with four levels where the “larger-the-better” function was selected to maximize the dye fixation rate. Additionally, the color uniformity and wash and rubbing fastnesses were at an acceptable level when both treatments were applied. Finally, the dyes were hydrolyzed after wet fixation, and the hydrolysis percentages were enhanced after the drying process.


2021 ◽  
Vol 8 (2) ◽  
pp. 1-8
Author(s):  
Chanel Angelique Fortier ◽  
Christopher Delhom ◽  
Michael K. Dowd

This work reports on two debated points related to the metal content of cotton fiber and its influence on processing. The first issue is if the metal levels of raw fibers are naturally deposited during fiber development or if the levels are influenced by weathering and harvesting conditions present after boll opening. This was tested by harvesting bolls just as they were opening and after the opened bolls were allowed to field age. The second issue relates to the importance of metal levels on fiber dyeability. Results indicate that the metal levels of newly-opened cotton were not appreciably different from those of aged cotton bolls and that the fiber metal levels after scouring and bleaching had little correlation with dye uptake. Additionally, some metal levels exceeded those previously reported and the environment appeared to have a stronger influence on fiber Ca and Mg levels than did cultivar differences.


2017 ◽  
Vol 36 (2) ◽  
pp. 119-132 ◽  
Author(s):  
Sharjeel Abid ◽  
Tanveer Hussain ◽  
Ahsan Nazir ◽  
Zulfiqar Ali Raza ◽  
Amna Siddique ◽  
...  

In printing and resin finishing of cotton fabrics, the curing step is involved twice, firstly for fixation of reactive dye and secondly for the fixation of resin for proper cross-linking. In developing country like Pakistan, where cotton is a major portion of textile exports, the elimination of one fixation stage is economical and advantageous. This study dealt with the simultaneous fixation of wrinkle-free finish (resin) and reactive dye printing for cost effectiveness. The processed route of treatment imparted a maximum dry crease recovery angle of 230° and color strength up to 89.89%. The produced fabrics were characterized using crocking fastness (dry and wet), color strength sum %, color fastness to laundry, crease recovery angle, and wrinkle recovery by appearance method. Response surface optimizer gave good composite desirability value (0.08300) with color strength % of up to 73.73 and dry crease recovery angle up to 218°.


2012 ◽  
Vol 441 ◽  
pp. 111-115 ◽  
Author(s):  
Lan Zhou ◽  
Jian Zhong Shao ◽  
Li Qin Chai ◽  
Guo Dong Fu

Sericin was investigated as modifier for surface modification on cotton fibers. The measurement of zeta potential was initially used to indicate the effectiveness of the modification. It was found that the sericin largely developed the positive charge on cotton fibers following a decrease in the pH. Adsorption studies of the annatto dye on the modified cotton fibers showed that sericin enhanced the adsorption capacity of the annatto dye on cotton fibers. The results of the zeta potential and the adsorption revealed that the uptake of annatto dye on modified cotton fibers occurred via electrostatic attractions between the anion of the dye and the cationic segments on the modified cotton fibers.


1969 ◽  
Vol 39 (6) ◽  
pp. 560-567 ◽  
Author(s):  
D. Meimoun ◽  
A. Parisot

The introduction of elastomeric substances between the cellulose fibrils and/or histological elements of cotton fibers could lead to wrinkle-resistant cottons. Such substances, polyenes obtained by polymerization in situ after inclusion within the structure, are unable to penetrate the intermolecular structure, but are able to link together the elements of the fiber. This might result in a fiber with greater delayed elastic recovery and reduced permanent set, permitting wrinkle recovery of cotton fabrics to be increased. The study of optimum reaction parameters resulted in a reproducible process for including the polymer. The location of the polymer has been determined through the development of a new method for revealing the structure of cellulose. The desired mechanical properties of woven treated fabrics are improved, as indicated by various measurements. The first results concerning single fibers seem to corroborate the preceding.


Sign in / Sign up

Export Citation Format

Share Document