Preparation and Characterization of PMMA-Based Cements Containing Magnetic Nanoparticles for the Magnetic Hyperthermia

2013 ◽  
Vol 647 ◽  
pp. 155-159 ◽  
Author(s):  
Zheng Hai Tang ◽  
Xiao Wen Wang ◽  
Lin Pan ◽  
Yan Wen Hu ◽  
Yang Wu ◽  
...  

Three types of polymethylmethacrylate(PMMA)-based cements containing magnetic (Fe3O4) particles were developed and their properties were evaluated. The commercial available PMMA cement (PMMAc) was used as a control material. The setting time of the cement extended while the compressive strength of the samples decreased with increasing Fe3O4 content. There was no obvious difference in peak temperature between the cements during the setting reaction. The cement with 10 wt% Fe3O4 in an alternating magnetic field (AMF) of 125 Gs and cement with 20 wt% Fe3O4 in an AMF of 100 Gs could generate enough heat for the therapeutic hyperthermia of bone metastasis.

2011 ◽  
Vol 332-334 ◽  
pp. 1655-1658
Author(s):  
Biao Wang ◽  
Rui Juan Xie ◽  
Yang Yang Huang

In this paper, calcium phosphate cement (CPC) was prepared with tetracalcium phosphate (TTCP)/dicalcium phosphate anhydrous (DCPA) system as solid phase and phosphate buffered solution (PBS) as liquid phase, then silk fibroin (SF) was added into CPC to form silk fibroin/calcium phosphate composite. To study the effect of SF on the properties of composite, different mass fraction of SF was added into the composite. The surface morphology was observed by Scanning Electron Microscope. The setting time was investigated by ISO Cement Standard Consistency Instrument. The structure of the composite was studied by X-ray diffraction and infrared spectroscopy. Mechanical properties of samples were tested by Instron Universal Testing Machine. The results showed that the particles of SF could be seen obviously in the surface of all composite, and acicular crystal of hydroxyapatite (HA) was formed in the hardening body of both the composite and the pure CPC. The acicular crystal of HA derived from composite with SF appeared to be thinner. The setting times of the composites were all between 9 to 15min. Compared to pure CPC, the compressive strength and work-of-compressive of composites were all improved. The compressive strength of the composite with 1% SF increased obviously.


2012 ◽  
Vol 529-530 ◽  
pp. 157-160 ◽  
Author(s):  
Kemal Sariibrahimoglu ◽  
Joop G.C. Wolke ◽  
Sander C.G. Leeuwenburgh ◽  
John A. Jansen

Calcium phosphate cements (CPCs) can be a suitable scaffold material for bone tissue engineering because of their osteoconductivity and perfect fit with the surrounding tissue when injected in situ. However, the main disadvantage of hydroxyapatite (HA) forming CPC is its slow degradation rate, which hinders complete bone regeneration. A new approach is to use hydraulic apatite cement with mainly α/β-tricalciumphosphate (TCP) instead of α-TCP. After hydrolysis the α/β-TCP transforms in a partially non-absorbable HA and a completely resorbable β-TCP phase. Therefore, α-TCP material was thermally treated at several temperatures and times resulting in different α/β-TCP ratios. In this experiment, we developed and evaluated injectable biphasic calcium phosphate cements (BCPC) in vitro. Biphasic α/β-TCP powder was produced by heating α-TCP ranging from 1000-11250°C. Setting time and compressive strength of the CPCs were analyzed after soaking in PBS for 6 weeks. Results demonstrated that the phase composition can be controlled by the sintering temperature. Heat treatment of α-TCP, resulted in 100%, 75% and 25% of α-to β-TCP transformation, respectively. Incorporation of these sintered BCP powder into the cement formulation increased the setting time of the CPC paste. Compressive strength decreased with increasing β-TCP content. In this study, biphasic CPCs were produced and characterized in vitro. This injectable biphasic CPC presented comparable properties to an apatitic CPC.


2011 ◽  
Vol 493-494 ◽  
pp. 355-360
Author(s):  
F. Dombrowski ◽  
R. Hoffmann ◽  
Ute Ploska ◽  
Heidi Marx ◽  
Georg Berger

The paper presented here deals with rheological and hardening properties during the setting reaction, and density and compressive strength after the final setting of a figuline composite consisting of Ca2KNa(PO4)2and 2wt% medium gel strength gelatin. Compared to the composite with monomodal particle size distribution (d50=7.18µm; span=3.9) and its properties during and after setting reaction, the goal of this work is to increase the resulting product compressive strength by mixing different particle sizes in order to obtain bi- and trimodal distributions. For the bimodal powder mixtures the ratio in diameter (dcourse/dsmall) was chosen with 7/1 and volume ratio dcourse/dsmallwas 70/30%. For the trimodal powder mixtures the ratio in diameter (dcourse/dmedium/dsmall) was chosen with 70/7/1 and volume ratio dcourse/dmedium/dsmallwas set to 44/28/28%.After establishing an adequate crushing and sieving process the tap density and powder density of each fraction was determined. Subsequently, the different particle sizes were mixed and the densities and the Hausner ratio were determined again. The mixtures show an increase in both densities especially the tap density increased significantly. Rheological investigations show that the graphs of storage and loss moduli of the multimodal powder mixtures respectively are similar. The characteristic setting times show a slight decrease compared with the monomodal composite but not significantly different data. When comparing the resulting compressive strength of cylindrical samples, which were stored direct after reaching the initial setting time under physiological conditions, the studies illustrated in all cases for the multimodal mixtures a significant increase in compressive strength and a higher density.


2019 ◽  
Vol 274 ◽  
pp. 05003
Author(s):  
Rafael Robayo-Salazar ◽  
Ruby Mejía De Gutiérrez

This research shows the obtaining and characterization of an Alkali Activated Binary Concrete (AABC), based on 70% of a natural volcanic pozzolan (NP) and 30% ground blast furnace slag (GBFS), as a real and environmentally sustainable alternative of replacement to the Portland cement (OPC)-based concrete. As the alkaline activator a mixture of sodium hydroxide and silicate was used. The alkaline binder was characterized prior to the design of the concrete, this included the determination of its compressive strength, setting time and heat of reaction. The mix design of the AABC was performed by adapting the absolute volume methodology used for conventional concretes. AABC was compared equivalently with a concrete based on OPC. The characterization of concretes included the determination of properties such as: slump, compressive strength, density and porosity. In addition, the carbon footprint of the concretes was determined by analysing its life cycle using the LCA methodology. These results are considered as a contribution to the standardization of a real-scale production process of alkaline pre-mixed concretes in countries with deposits of NP such as Colombia.


Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 119
Author(s):  
Verdiana Marchianò ◽  
Maria Salvador ◽  
Amanda Moyano ◽  
Gemma Gutiérrez ◽  
María Matos ◽  
...  

The urgency for the availability of new antibacterial/disinfectant agents has become a worldwide priority. At the same time, along with the extensive use of other metal nanoparticles (NPs), the investigation of magnetic NPs (MNPs) in antibacterial studies has turned out to be an increasingly attractive research field. In this context, we present the preparation and characterization of superparamagnetic iron oxide NPs, electrodecorated with antimicrobial copper NPs, able to modulate the release of bioactive species not only by the NP’s stabilizer, but also through the application of a suitable magnetic field. Antimicrobial synergistic CuNPs stabilized by benzalkonium chloride have been used in the current study. We demonstrate the successful preparation of Cu@Fe3O4 MNPs composites through morphological and spectroscopic results. Additionally, an extensive magnetic characterization is reported, along with hyperthermia-induced copper ionic release. On the basis of our results, we propose a new generation of antimicrobial magnetic nanomaterials, whose bioactivity can be also tuned by the application of a magnetic field.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4998
Author(s):  
Haiyang Wang ◽  
Toshinari Maeda ◽  
Toshiki Miyazaki

Polymethyl methacrylate (PMMA)-based bone cement is a popular biomaterial used for fixation of artificial joints. A next-generation bone cement having bone-bonding ability, i.e., bioactivity and antibacterial property is desired. We previously revealed that PMMA cement added with 2-(tert-butylamino)ethyl methacrylate, γ-methacryloxypropyltrimethoxysilane and calcium acetate showed in vitro bioactivity and antibacterial activity. This cement contains calcium acetate at 20% of the powder component. Lower content of the calcium acetate is preferable, because the release of a lot of calcium salt may degrade mechanical properties in the body environment. In the present study, we investigate the effects of calcium acetate content on the setting property and mechanical strength of the cement and apatite formation in simulated body fluid (SBF). The setting time increased and the compressive strength decreased with an increase in calcium acetate content. Although the compressive strength decreased after immersion in SBF for 7 d, all the cements still satisfied the requirements of ISO5833. Apatite was formed in SBF within 7 d on the samples where the calcium acetate content was 5% or more. Therefore, it was found that PMMA cement having antibacterial properties and bioactivity can be obtained even if the amount of the calcium acetate is reduced to 5%.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Teng Dong ◽  
Shuibo Xie ◽  
Jingsong Wang ◽  
Guodong Zhao ◽  
Qingchun Song

A method for solidifying spent tributyl phosphate and kerosene (TBP/OK) organic liquids in a phosphate acid-based geopolymer (PAG) was investigated. The TBP/OK emulsion containing tween 80 (T80), TBP/OK organic liquids, and H3PO4 was prepared. The TBP/OK emulsion was mixed with metakaolin to obtain solidified TBP/OK forms (SPT). The compressive strength of the SPT was up to 59.19 MPa when the content of TBP/OK was 18%. The loss of compressive strength of SPT was less than 10% after immersion and less than 25% after freeze-thaw treatment. The final setting time was 40.0 h, and the shrinkage of SPT was nearly 3%. The leaching test indicated that the release of TBP/OK from hardened SPT was limited. Characterization of SPT suggested that solidification of TBP/OK using PAG occurred by physical encapsulation.


2012 ◽  
Vol 550-553 ◽  
pp. 1139-1143 ◽  
Author(s):  
Meng Zhang ◽  
Rui Juan Xie ◽  
Yang Yang Huang

In this paper, calcium sulfate hemihydrate (CSH) was added into silk fibroin/calcium phosphate (SF/CP) composites. The macropores formed by the SF was connected by micropores formed from rapid degradation of CSH, so that the structure of the composites is more close to the natural bone. The results indicated that the range of pore sizes around 30 - 308 microns were formed in the composites by SF. Compared to SF/CP composites without CSH, the injectability decreased, but the rate were both above 90%; the setting time increased, but were both less than 16min; the porosity increased. When the proportion of CSH was greater than 10%, the morphology of the product of setting reaction, i.e. the hydroxyapatite (HA) crystals, was influenced. When the proportion of CSH was less than 10%, the HA crystals appeared to be needle-like and plate-like crystals. When the proportion of CSH was greater than 10%, HA crystals were needle-like. The added amount of CSH had significant effects on compressive strength and work-of-compressive. The compressive strength and work-of-compressive decreased with increasing of CSH content in the composites.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2911
Author(s):  
Margarida Gonçalves ◽  
Inês Silveirinha Vilarinho ◽  
Marinélia Capela ◽  
Ana Caetano ◽  
Rui Miguel Novais ◽  
...  

Ordinary Portland Cement is the most widely used binder in the construction sector; however, a very high carbon footprint is associated with its production process. Consequently, more sustainable alternative construction materials are being investigated, namely, one-part alkali activated materials (AAMs). In this work, waste-based one-part AAMs binders were developed using only a blast furnace slag, as the solid precursor, and sodium metasilicate, as the solid activator. For the first time, mortars in which the commercial sand was replaced by two exhausted sands from biomass boilers (CA and CT) were developed. Firstly, the characterization of the slag and sands (aggregates) was performed. After, the AAMs fresh and hardened state properties were evaluated, being the characterization complemented by FTIR and microstructural analysis. The binder and the mortars prepared with commercial sand presented high compressive strength values after 28 days of curing-56 MPa and 79 MPa, respectively. The mortars developed with exhausted sands exhibit outstanding compressive strength values, 86 and 70 MPa for CT and CA, respectively, and the other material’s properties were not affected. Consequently, this work proved that high compressive strength waste-based one-part AAMs mortars can be produced and that it is feasible to use another waste as aggregate in the mortar’s formulations: the exhausted sands from biomass boilers.


2021 ◽  
Vol 13 (8) ◽  
pp. 4546
Author(s):  
Kaiyue Zhao ◽  
Peng Zhang ◽  
Bing Wang ◽  
Yupeng Tian ◽  
Shanbin Xue ◽  
...  

Cement-based materials prepared with activated water induced by a magnetic field or electric field represent a possible solution to environmental issues caused by the worldwide utilization of chemical admixtures. In this contribution, electric- and magnetic-activated water have been produced. The workability and mechanical properties of cement mortar prepared with this activated water have been investigated. The results indicate that the pH and absorbance (Abs) values of the water varied as the electric and magnetic field changed, and their values increased significantly, exhibiting improved activity compared with that of the untreated water. In addition, activated water still retains activity within 30 min of the resting time. The fluidity of the cement paste prepared with electric-activated water was significantly larger than that of the untreated paste. However, the level of improvement differed with the worst performance resulting from cement paste prepared with alternating voltage activated water. In terms of mechanical properties, both compressive strength and flexural strength obtained its maximum values at 280 mT with two processing cycles. The compressive strength increased 26% as the curing time increased from 7 days to 28 days and flexural strength increased by 31%. In addition, through the introduction of magnetic-activated water into cement mortar, the mechanical strength can be maintained without losing its workability when the amount of cement is reduced.


Sign in / Sign up

Export Citation Format

Share Document