Research on Impeller Blade Style of Stamping and Welding Multistage Centrifugal Pump

2013 ◽  
Vol 655-657 ◽  
pp. 465-469
Author(s):  
Jue Xin Ding ◽  
Shui Hua Zheng

Impact of vane curve on hydraulic performance of the DQ100-64-22 stamping pump was researched by CFD simulation and experiments. The research results show that processing fillet at the connecting section of space blade and shafts only generates minor influence on the pump performance,but it can decrease incidence losses of the inlet flow. The cylindrical blade type has great influence on both inner flow field and hydraulic performance of pump in the high flow rate conditions. The research can supply a good support for the vane curve design and manufacture of stamping and welding multistage centrifugal pumps.

Author(s):  
Jian Wang ◽  
Jichuan Wu ◽  
Shouqi Yuan ◽  
Wei-Cheng Yan

Abstract Previous work showed that particle behaviors in ultrasonic atomization pyrolysis (UAP) reactor have a great influence on the transport and collection of particles. In this study, the effects of droplet behaviors (i.e. droplet collision and breakage) and solvent evaporation on the droplet size, flow field and collection efficiency during the preparation of ZnO particles by UAP were investigated. The collision, breakage and solvent evaporation conditions which affect the droplet size distribution and flow pattern were considered in CFD simulation based on Eulerian-Lagrangian method. The results showed that droplet collision and breakage would increase the droplet size, broaden the droplet size distribution and hinder the transport of droplets. Solvent evaporation obviously changed the flow pattern of droplets. In addition, both droplet behaviors and solvent evaporation reduced the collection efficiency. This study could provide detail information for better understanding the effect of droplet behaviors and solvent evaporation on the particle production process via UAP reactor.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 886
Author(s):  
Cui Dai ◽  
Chao Guo ◽  
Yiping Chen ◽  
Liang Dong ◽  
Houlin Liu

The strong noise generated during the operation of the centrifugal pump harms the pump group and people. In order to decrease the noise of the centrifugal pump, a specific speed of 117.3 of the centrifugal pump is chosen as a research object. The bionic modification of centrifugal pump blades is carried out to explore the influence of different bionic structures on the noise reduction performance of centrifugal pumps. The internal flow field and internal sound field of bionic blades are studied by numerical calculation and test methods. The test is carried out on a closed pump test platform which includes external characteristics and a flow noise test system. The effects of two different bionic structures on the external characteristics, acoustic amplitude–frequency characteristics and flow field structure of a centrifugal pump, are analyzed. The results show that the pit structure has little influence on the external characteristic parameters, while the sawtooth structure has a relatively great influence. The noise reduction effect of the pit structure is aimed at the wide-band noise, while the sawtooth structure is aimed at the discrete noise of the blade-passing frequency (BPF) and its frequency doubling. The noise reduction ability of the sawtooth structure is not suitable for high-frequency bands.


Author(s):  
Qian-qian Li ◽  
Da-zhuan Wu

Due to the distinctive characteristic of massive flow rates, double-suction centrifugal pump has been extensively applied in lots of perspectives, such as drainage, irrigation, transportation projects and other hydraulic engineering realms. Nevertheless, the significance of the pressure fluctuation inside the double-suction centrifugal pump, which is getting more and more prominent under the soaring demands for low noise and comfortable living environment, could not be underestimated. Consequently, how to reduce the pressure fluctuation as far as possible and enhance the running stability of the pump is always the research hotspot. In this study, the double-suction centrifugal impeller with abominable vibration performance is redesigned to improve the internal flow and reduce the flow-induced noise. What’s addition, the two redesigned impellers wearing splitter blades were compared in staggered arrangement with different angles for the purpose of ulteriorly decreasing the pressure fluctuation. On the basis of Realizable k-ε model and SIMPLEC algorithm, the unsteady Reynolds-averaged Navier-Stokes equations (URANS) were resolved by means of CFD simulation and the flow performance and the vibration performance were validated with the experiments. The results illustrate that the redesigned impeller with multi-blade could raise the hydraulic performance and reduce the pressure fluctuation inside the pump. When the impeller of each side was laid with the staggered angle of 12 degrees, the pressure distribution tended to be more uniform and the pressure fluctuation was well ameliorated. Through the pressure fluctuation analysis in time domain and frequency domain, the pressure change inside the pumps could be evaluated quantitatively and accurately, hence different pumps could be contrasted in detail. The consequences of this paper could provide reference for pressure fluctuation reduction and vibration performance reinforcement of double-suction centrifugal pumps as well as other vane pumps.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1408 ◽  
Author(s):  
Bin Huang ◽  
Guitao Zeng ◽  
Bo Qian ◽  
Peng Wu ◽  
Peili Shi ◽  
...  

The pressure fluctuation inside centrifugal pumps is one of the main causes of hydro-induced vibration, especially at the blade-passing frequency and its harmonics. This paper investigates the feature of blade-passing frequency excitation in a low-specific-speed centrifugal pump in the perspective of local Euler head distribution based on CFD analysis. Meanwhile, the relation between local Euler head distribution and pressure fluctuation amplitude is observed and used to explain the mechanism of intensive pressure fluctuation. The impeller blade with ordinary trailing edge profile, which is the prototype impeller in this study, usually induces wake shedding near the impeller outlet, making the energy distribution less uniform. Because of this, the method of reducing pressure fluctuation by means of improving Euler head distribution uniformity by modifying the impeller blade trailing edge profile is proposed. The impeller blade trailing edges are trimmed in different scales, which are marked as model A, B, and C. As a result of trailing edge trimming, the impeller outlet angles at the pressure side of the prototype of model A, B, and C are 21, 18, 15, and 12 degrees, respectively. The differences in Euler head distribution and pressure fluctuation between the model impellers at nominal flow rate are investigated and analyzed. Experimental verification is also conducted to validate the CFD results. The results show that the blade trailing edge profiling on the pressure side can help reduce pressure fluctuation. The uniformity of Euler head circumferential distribution, which is directly related to the intensity of pressure fluctuation, is improved because the impeller blade outlet angle on the pressure side decreases and thus the velocity components are adjusted when the blade trailing edge profile is modified. The results of the investigation demonstrate that blade trailing edge profiling can be used in the vibration reduction of low specific impellers and in the engineering design of centrifugal pumps.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Hong Li ◽  
Haifei Zhuang ◽  
Weihao Geng

The turbulence generator is a key component of medium consistency centrifugal pulp pumps, with functions to fluidize the medium consistency pulp and to separate gas from the liquid. Structure sizes of the generator affect the hydraulic performance. The radius and the blade laying angle are two important structural sizes of a turbulence generator. Starting with the research on the flow inside and shearing characteristics of the MC pulp, a simple mathematical model at the flow section of the shearing chamber is built, and the formula and procedure to calculate the radius of the turbulence generator are established. The blade laying angle is referenced from the turbine agitator which has the similar shape with the turbulence generator, and the CFD simulation is applied to study the different flow fields with different blade laying angles. Then the recommended blade laying angle of the turbulence generator is formed to be between 60° and 75°.


Author(s):  
Liang Dong ◽  
Hou-lin Liu ◽  
Ming-gao Tan ◽  
Yong Wang ◽  
Kai Wang

The computational domain is one of the major factors inducing CFD uncertainty. The effects of different computational domains and several key issues on CFD simulation results for centrifugal pumps are studied, such as the effects of modeling methods and boundary conditions on the whole computational domain numerical simulation. The study results indicate that the prediction accuracy of the whole computational domain is higher than that of the non-whole computational domain. The velocity distribution obtained by the whole computational domain in the gap between the impeller and volute is significantly layered, while the distribution obtained by the non-whole computational domain is triangular. The relative velocity distribution in the impeller and the turbulent kinetic energy in the volute for the two computational domains are obviously different, too. The number of the interfaces has little impact on the prediction accuracy. The rotational attribute of the chamber wall has a little effect on velocity and turbulent kinetic energy distribution, but the rotational attribute of the chamber wall can significantly improve the prediction accuracy of efficiency.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
D. G. J. Detert Oude Weme ◽  
M. S. van der Schoot ◽  
N. P. Kruyt ◽  
E. J. J. van der Zijden

The effect of trimming of radial impellers on the hydraulic performance of low specific-speed centrifugal pumps is studied. Prediction methods from literature, together with a new prediction method that is based on the simplified description of the flow field in the impeller, are used to quantify the effect of trimming on the hydraulic performance. The predictions by these methods are compared to measured effects of trimming on the hydraulic performance for an extensive set of pumps for flow rates in the range of 80% to 110% of the best efficiency point. Of the considered methods, the new prediction method is more accurate (even for a large impeller trim of 12%) than the considered methods from literature. The new method generally overestimates the reduction in the pump head after trimming, and hence results less often in impeller trims that are too large when the method is used to determine the amount of trimming that is necessary in order to attain a specified head.


Author(s):  
Chaoyue Wang ◽  
Fujun Wang ◽  
Zhichao Zou

In engineering applications, design and manufacture of double-suction impeller are on the basis of single-suction impeller. However, there is a lack of clear view on the differences of hydraulic performance between single-suction centrifugal pump and double-suction centrifugal pump which has the same blades. In this paper, a single-suction centrifugal pump and double-suction centrifugal pump with the same blades are investigated respectively, and their hydraulic performances have been compared in terms of external characteristics, flow pattern, pressure fluctuation and cavitation characteristics. In operating range of 0.6Q0∼1.1Q0, results show that the efficiency of double-suction pump is 4.14% higher than that of single-suction pump stably, and the head of single suction pump is 3.5% higher than that of double-suction pump stably. Single-suction impeller and double-suction impeller have similar jet-wake structure in impeller outlet, but the amplitude of velocity of single suction impeller changes more sharply. In the vicinity of rated condition, the amplitude of pressure fluctuation of double suction pump is about half that of the single suction pump, and the cavitation performance of double suction pump and single suction pump are basically the same. These quantitative results show that pressure fluctuation characteristics and cavitation performance of single-suction pump and double-suction pump with the same blades have little difference in the vicinity of rated condition. Compared with single-suction pump, the head of double-suction pump has declined, while the efficiency has improved remarkably. The research results have significant guidance on excavating the potential of excellent hydraulic models and guiding the design of double-inlet multistage double-suction centrifugal pump.


Sign in / Sign up

Export Citation Format

Share Document