Prediction of the Flow, Reaction and Heat Transfer for Glass Furnace Firing Petroleum Coke

2013 ◽  
Vol 690-693 ◽  
pp. 3090-3096
Author(s):  
Chang Sheng Hu ◽  
Yun Bo Wang ◽  
Ping Wang ◽  
Jian Quan Bi

In this paper, the mathematical models of gas dynamics, combustion and heat transfer and dispersed phase were established for the glass furnace combustion space, according to the practical glass furnace and operation condition, the computer simulation of the glass furnace was made; the simulation results coincided with the facts. On the base the influence of particle size of petroleum coke and oxygen-enriched combustion on the furnace combustion has been simulated.

2021 ◽  
pp. 1-15
Author(s):  
Hamed Abedini ◽  
Nesrin Ozalp

Abstract Carbon particles can be used as catalyst in solar reactors where they serve as radiant absorbent and nucleation sites for the heterogeneous decomposition reaction. Unlike commonly used metal catalysts, carbon catalyst does not have durability problem and high cost. However, in order to achieve sustainable catalytic decomposition of feedstock over carbon catalysts at elevated temperatures, the surface area of the carbon particles must be maintained. A subsequent treatment of deactivated carbon samples with CO2 at about 1000 °C would increase the surface and would recover the original activity as catalyst. In a windowed solar reactor, carbon particles are directly exposed to the high flux irradiation providing efficient radiation heat transfer directly to the reaction site. Therefore, one of the key parameters to achieve higher conversion efficiencies in a solar reactor is the presence and transport of carbon particles. In this paper, a transient one-dimensional model is presented to describe effect of carbon particle feeding on energy transport and temperature profile of a cavity-type solar receiver. The model was developed by dividing the receiver into several control volumes and formulating energy balance equations for gas phase, particles, and cavity walls within each control volume. Monte Carlo ray tracing (MCRT) method was used to determine the solar heat absorbed by particles and cavity walls, as well as the radiative exchange between particles and cavity walls. Model accuracy was verified by experimental work using a solar receiver where carbon particles were injected uniformly. Comparison of simulation results with the experimentally measured temperatures at three different locations on cavity receiver wall showed an average deviation of 3.81%. The model was then used to study the effect of carbon particle size and feeding rate on the heat transfer, temperature profile, and energy absorption of the solar receiver. Based on the simulation results, it was found that injection of carbon particles with a size bigger than 500 µm has no significant influence on heat transfer of the system. However, by reducing the particle size lower than 500 µm, temperature uniformity and energy absorption were enhanced.


2012 ◽  
Vol 605-607 ◽  
pp. 1423-1426
Author(s):  
Xin Rong Wang ◽  
Ping Wang ◽  
Ya Chao Cui ◽  
Tao Han

For the purpose of studying on the machining process of complex ruled surface, a new method of computer simulation about five-axis linkage WEDM was put forward.Through analyzing the characteristics of five-axis linkage WEDM and its motion laws, the related mathematical models were built. The whole machining process of five-axis linkage WEDM can be directly observed by running the simulation program. The ideal simulation results can be obtained. The ideal machining parameters gotten by computer simulation provide a theory basis for machining complicated ruled surface. Consequently, the machining capability of WEDM is extended and the problem of machining complicated ruled surface is resolved.


Author(s):  
Shakhboz Dadabaev

The main negative factors affecting the starting modes of synchronous electric drives of pumping units of irrigation water supply systems were identified, computer simulation of direct and soft start of synchronous electric drive was made, the simulation results are shown in graphs and a brief conclusion was made on the study.


1998 ◽  
Vol 38 (2) ◽  
pp. 201-208
Author(s):  
M. W. Milke

A need exists for tools to improve evaluations of the economics of landfill gas recovery. A computer simulation tool is presented. It uses a spreadsheet computer program to calculate the economics for a fixed set of inputs, and a simulation program to consider variations in the inputs. The method calculates the methane generated each year, and estimates the costs and incomes associated with the recovery and sale of the gas. Base case results are presented for a city of 500,000. An uncertainty analysis for a hypothetical case is presented. The simulation results can help an analyst see the key variables affecting the economics of a project.


2021 ◽  
Vol 13 (9) ◽  
pp. 5086
Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Oztop ◽  
Ali J. Chamkha

Single and double impinging jets heat transfer of non-Newtonian power law nanofluid on a partly curved surface under the inclined magnetic field effects is analyzed with finite element method. The numerical work is performed for various values of Reynolds number (Re, between 100 and 300), Hartmann number (Ha, between 0 and 10), magnetic field inclination (γ, between 0 and 90), curved wall aspect ratio (AR, between 01. and 1.2), power law index (n, between 0.8 and 1.2), nanoparticle volume fraction (ϕ, between 0 and 0.04) and particle size in nm (dp, between 20 and 80). The amount of rise in average Nusselt (Nu) number with Re number depends upon the power law index while the discrepancy between the Newtonian fluid case becomes higher with higher values of power law indices. As compared to case with n = 1, discrepancy in the average Nu number are obtained as −38% and 71.5% for cases with n = 0.8 and n = 1.2. The magnetic field strength and inclination can be used to control the size and number or vortices. As magnetic field is imposed at the higher strength, the average Nu reduces by about 26.6% and 7.5% for single and double jets with n greater than 1 while it increases by about 4.78% and 12.58% with n less than 1. The inclination of magnetic field also plays an important role on the amount of enhancement in the average Nu number for different n values. The aspect ratio of the curved wall affects the flow field slightly while the average Nu variation becomes 5%. Average Nu number increases with higher solid particle volume fraction and with smaller particle size. At the highest particle size, it is increased by about 14%. There is 7% variation in the average Nu number when cases with lowest and highest particle size are compared. Finally, convective heat transfer performance modeling with four inputs and one output is successfully obtained by using Adaptive Neuro-Fuzzy Interface System (ANFIS) which provides fast and accurate prediction results.


2015 ◽  
Vol 1092-1093 ◽  
pp. 534-538
Author(s):  
Xiong Chen ◽  
Hai Feng Xue ◽  
Hua Liang

Thermal protection materials are required to preserve the metal components of motor that suffer severe heat load. The research on thermal response of insulation of ramjet combustion chamber was carried out by the ground test and numerical simulation. During the working time of the ramjet, the back-face temperature of the thermal protection material was measured. The scanning electron microscope of samples was investigated. The calculation of thermo-chemical flow was solved by the CFD software FLUENT to provide the heat load boundary for simulation of heat transfer of EPDM insulation. The heat transfer model was solved by the FEA software ANSYS. Comparison of the temperature profile at the ablating surface between calculation and measurement shows the two results agree with each other. The simulation results can provide the temperature rising trend of insulation in a certain extent.


Sign in / Sign up

Export Citation Format

Share Document