Fabrication of ZrB2-Based Ceramics Doped with ZrSi2

2013 ◽  
Vol 690-693 ◽  
pp. 538-541
Author(s):  
Jian Li ◽  
Z.Q. Wei ◽  
Z.F. Zhang ◽  
J. J. Sha

With the addition of ZrSi2, the highly densified ZrB2-based ceramics were fabricated by hot pressing. The relative density increased with increasing the volume fraction of ZrSi2­and sintering temperature; the Vickers hardness increased with increasing the sintering temperature, but decreased with increasing the volume fraction of ZrSi2­.

2011 ◽  
Vol 233-235 ◽  
pp. 2272-2275
Author(s):  
Xin Yan Yue ◽  
Bi Shuang Chen ◽  
Jing Zhao ◽  
Hong Qiang Ru ◽  
Wei Wang

B4C ceramics were obtained using hot-pressing method. The effect of different sintering temperatures on the microstructures and mechanical properties of B4C ceramics were investigated. Oxidation resistances were studied over the range 600-850°C. The experimental results showed that the relative density, bending strength and fracture toughness all increased first and then decreased with increasing the sintering temperature. The Vickers-hardness increased as the sintering temperature increasing. When the sintering temperature was 1950°C, the B4C ceramics showed the optimized properties. The values of its relative density, Vickers-hardness, bending strength and fracture toughness were 99.1%, 34.0 GPa, 524.6 MPa and 6.56 MPa·m1/2, respectively.


2012 ◽  
Vol 512-515 ◽  
pp. 377-381 ◽  
Author(s):  
Jin Rong Lu ◽  
Yang Zhou ◽  
Yong Zheng ◽  
Shi Bo Li ◽  
Zhen Ying Huang ◽  
...  

In this paper, a new type of Ti3SiC2/Cu composites with the volume fractions of 30% Ti3SiC2 particle was prepared by hot pressing and vacuum sintering respectively. The effects of sintering temperature and holding time on the density, resistance and Vickers hardness of Cu-30vol%Ti3SiC2 composite were investigated. The results show that the mechanical properties of the composites prepared by hot pressing are better than that prepared by vacuum sintering. The relative densities of Cu-30vol% Ti3SiC2 composites are rather high in suitable sintering conditions. It achieved 100% for the composites prepared by hot pressing at 930°C for 2h, and 98.4% for the composites prepared by vacuum sintering at 1250°C for 1h. At the same time, the maximum Vickers hardness reached 1735MPa at 900°C by hot pressing. The resistance and Vickers hardness of the composites decreased with an increase in sintering temperature, whereas the density increased. Scanning electron microscope (SEM) and energy-dispersive spectroscopy (EDS) were used to observe the microstructure of the composites. The relationship between microstructure and mechanical properties was discussed.


2020 ◽  
Vol 12 (5) ◽  
pp. 168781402092571
Author(s):  
Xianrui Zhao ◽  
Ze Yu ◽  
Dunwen Zuo ◽  
Qintao Li ◽  
Mengxian Zhang ◽  
...  

Ti(C,N)-TiB2-Co cermets were in situ synthesized, via reactive hot pressing from the Co-Ti-C-BN system, with a Co content ranging from 6 to 22 wt%. The microstructure, relative density, hardness, and fracture toughness of the sintered compacts was investigated by light microscopy, scanning electron microscopy, ceramic densitometry, and Vickers hardness test. The investigations indicate that during hot pressing (compacting pressure = 30 MPa), when the Co content is 14–22 wt%, the metal binder is extruded. Co and Ti are included in the extrudate, breaking the original ratio and deteriorating the properties of the sintered products. As the Co content increases from 6 wt% to 12 wt%, the porosity increases, and the relative density increases from 97.2% to 99.5%. The fracture toughness increases from 6.1 to 6.8 MPa m1/2. The Vickers hardness first increases from 1897 HV10 to the maximum 1960 HV10 and then decreases slightly to 1945 HV10.


2006 ◽  
Vol 309-311 ◽  
pp. 57-60 ◽  
Author(s):  
Kazumichi Yanagisawa ◽  
Kongjun Zhu ◽  
Takahiro Fujino ◽  
Ayumu Onda ◽  
Koji Kajiyoshi ◽  
...  

The hydrothermal hot-pressing (HHP) technique was used to prepare hydroxyapatite (HAp) ceramics from a HAp powder with low crystallinity, and the effects of processing factors such as temperature, loading pressure and reaction time on densification were investigated. The crystallinity of HAp was increased by the HHP treatments. With the increase in reaction temperature, loading pressure and reaction time, the density and Vickers hardness of the compacts increased. The HAp compact with high relative density of 83% and high Vickers hardness of 2.9 GPa was successfully prepared by the HHP treatment at 200°C for 3 h under loading pressure of 60 MPa.


2015 ◽  
Vol 816 ◽  
pp. 200-204 ◽  
Author(s):  
Miao Miao Ruan ◽  
Xiao Ming Feng ◽  
Tao Tao Ai ◽  
Ning Yu ◽  
Kui Hua

TiC/Ti3AlC2 composites were successfully prepared by hot-pressing sintering method from the elemental powder mixtures of Ti, Al and TiC. A possible reaction mechanism was investigated by XRD. The density, Vickers hardness, flexural strength, and fracture toughness of the TiC/Ti3AlC2 composites were also measured. At 660 °C, Al melted and reacted with Ti to form TiAl3. At 900 °C, TiAl3 reacted with TiC and Ti to form Ti2AlC. At 1100 °C, Ti2AlC reacted with TiC to form Ti3AlC2. Increasing the sintering temperature, the content of Ti3AlC2 increased. The TiC/Ti3AlC2 composites had excellent performance after sintered at 1100 °C, the density, Vickers hardness, flexural strength and fracture toughness of the composite were 4.35 g/cm3, 4.72 GPa, 566 MPa and 6.18 MPa·m1/2, respectively.


2013 ◽  
Vol 551 ◽  
pp. 92-99
Author(s):  
Xu Guang Li ◽  
Hui Min Lu ◽  
Pan Pan Wang

In order to obtain the maximum relative density of γ-Ti-46.6Al-1.4Mn-2Mo alloy, the effects of the sintering temperature, heating preservation time and compacting force prepared by hot pressing were studied using Back Propagation (BP) Neural Network. The process parameters were optimized by Genetic Algorithm (GA) contributed by the use of Matlab. The results show that the optimum preparation process for Ti-46.6Al-1.4Mn-2Mo alloy are hot-pressing sintering temperature of 1374oC, heating preservation time of 291 min, compacting force of 37Mpa. The relative density of Ti-46.6Al-1.4Mn-2Mo alloy prepared under the condition is 96.11% (predicted value is 96.87%) with the relative error was only 0.78%. The microstructures of Ti-46.6Al-1.4Mn-2Mo alloy are studied by X-ray, optical microscope and SEM.


2012 ◽  
Vol 512-515 ◽  
pp. 739-743 ◽  
Author(s):  
S.Z. Zhu ◽  
D.L. Gong ◽  
Z. Fang ◽  
Q. Xu

For high thermal conductivity and high electrical conductivity, copper is a good electrode material. The wearing resistance and spark resistance of Cu can be improved with the addition of ZrB2. ZrB2-Cu composites with high Cu volume fraction was successfully prepared by spark plasma sintering (SPS) process in this paper. The microstructure and properties of the sintered samples were characterized. The effect of the sintering temperature and the ZrB2 content in composites on the relative density and properties of the composites were investigated. The results show that the relative density and mechanical properties increase with the sintering temperature increasing. The optimum sintering temperature is 900 °C for 10wt.% ZrB2-Cu, 1000 °C for 20wt.% ZrB2-Cu and 1050 °C for 30wt.% ZrB2-Cu. With the ZrB2 content in composites increasing from 10wt.% to 30 wt.%, the electrical resistivity increases from 2.25×10-6 Ω.cm to 8.82×10-6 Ω.cm, the flexural strength decreases from to 539.1 MPa to 482.2 MPa and the fracture toughness decreases from to 15 MPa.m 1/2 to 9 MPa.m 1/2. The hardness (HV) of ZrB2-Cu composites is significantly enhanced by the ZrB2 particulate reinforcement, increasing from 1410 MPa for 10 wt.% ZrB2 to 2480 MPa for 30wt.% ZrB2.


2017 ◽  
Vol 893 ◽  
pp. 354-359 ◽  
Author(s):  
Jun Nan Tao ◽  
Xiang Zhao Zhang ◽  
Gui Wu Liu ◽  
Zi Wei Xu ◽  
Hai Cheng Shao ◽  
...  

The diamond honing oilstone was fabricated by hot-pressing at 550–650 °C and 25 MPa pressure for 4 min, using Cu–Sn based alloys as binder metal and uncoated or W-coated diamond grains as abrasive material. The microstructures and phase compositions of the honing oilstone were examined and analyzed by SEM and XRD. Effects of the oilstone composition, sintering temperature and volume fraction of diamond grains on the mechanical properties of diamond honing oilstone were investigated. The experimental results show that the interfaces between the diamond grains and metal matrices of all the oilstone samples are smooth and no defects are observed in the metal matrices. The bending strength and rockwell hardness of the honing stones increase with the sintering temperature increasing from 550 °C to 650 °C, and the bending strength decrease with the increase of diamond grains faction. The minimum grinding ratio is obtained as the diamond was W-coated, which can be attributed to the improved interfacial bonding derived from the W coating.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 1444-1448 ◽  
Author(s):  
LUJUN HUANG ◽  
FUYAO YANG ◽  
YONGLIANG GUO ◽  
JIE ZHANG ◽  
LIN GENG

( TiBw + TiCp )/ Ti 6 Al 4 V composites were fabricated by reactive hot-pressing at the temperature range of 800~1200°C using the starting materials of TiB 2, C and Ti 6 Al 4 V powders. The XRD results suggested that the reaction between C and Ti happened 900°C and above, while the reaction between TiB 2 and Ti happen at 1100°C and above. SEM results also suggested that the reaction between C and Ti was prior to that between TiB 2 and Ti . With the increase of the sintering temperature, the size of TiC particle and TiB whisker reinforcements increased gradually. The TiC particle was formed at the boundaries of original Ti 6 Al 4 V particles, while the TiB whiskers grew toward the inside of Ti 6 Al 4 V particles, which resulted in a strong bonding between neighboring Ti 6 Al 4 V particles. The results of hardness and relative density tests showed that the ( TiBw + TiCp )/ Ti 6 Al 4 V composites sintered at 1100°C had the highest hardness and relative density compared with that sintered at other temperatures.


2012 ◽  
Vol 583 ◽  
pp. 219-222
Author(s):  
Rui Feng Wang ◽  
Zhi Ping Sun ◽  
Guo Jun Zhang ◽  
Li Yan Zou

VC/Fe-based composite samples were fabricated with different volume fraction of VC in vacuum, and the content are 40%, 55%, and 70% respectively. The relationship between microstructure and mechanical properties for VC/Fe based composite with various VC content were studied. The results indicated VC content had a significant effect on the performance and organization of the VC/Fe-based composites and the effect of VC content on the mechanical properties are varied. With ratio of VC powders increased, the volume fraction of V8C7 particles formed additionally, while the fraction of Fe particles slightly decreased. The flexural strength, fracture toughness, relative density and wear resistant increased with increase of VC content in the range of 0 to 55vol. %, and then decreased with further increase of VC content, while the Vickers hardness increased with the increase of VC content. By comparing the material with 55vol.%VC would show the best combination of properties in the prepared samples.


Sign in / Sign up

Export Citation Format

Share Document