scholarly journals Flexural and Impact Properties of Biopolymer Derived from Sugar Palm Tree

2013 ◽  
Vol 701 ◽  
pp. 225-228 ◽  
Author(s):  
Japar Sahari ◽  
S.M. Sapuan ◽  
Edi Syam Zainudin ◽  
Md Abdul Maleque

The effect of glycerol concentration (15 w/w%, 20 w/w%, 30 w/w% and 40 w/w%) to the flexural and impact properties of plasticized sugar palm starch (SPS) was investigated in this present paper. Prior to the testing, the sugar palm starch extracted from the interior part of sugar palm stem was mixed with common glycerol (was used as a plasticizer) to form a novel biopolymer. The flexural and impact test were carried out according to ASTM D790 and ASTM 256 respectively. From this investigation, it is found that the 30% glycerol concentrated SPS biopolymer showed the highest flexural strength and flexural modulus with the value of 0.13 MPa and 87.54 MPa respectively. For the impact analysis, it is also found that same biopolymer showed the highest impact strength which is 6.13kJ/m2.

2005 ◽  
Vol 6 (4) ◽  
pp. 93-100 ◽  
Author(s):  
Thomas R. Meng ◽  
Mark A. Latta

Abstract Resistance to impact fracture and high flexural strength are desirable properties of denture base acrylics. The purpose of this laboratory study was to determine the Izod impact strength, the flexural strength, the flexural modulus, and the yield distance for four premium denture resins. Bar specimens 86 x 11 x 3 mm of Lucitone 199, Fricke Hi-I, ProBase Hot, and Sledgehammer Maxipack were fabricated following the manufacturer's instructions for heat processing. The bars were surface finished using silicon carbide paper to 600 grit. Ten specimens from three lots of each material were made (n=30). Flexural strength, flexural modulus, and yield distance were determined by testing the specimens to failure using a three-point test fixture. Izod impact strength was determined using an Izod tester on un-notched specimens generated from the flexural test (n=60). Analysis of variance (ANOVA) and post-hoc Tukey's test were used for statistical comparison of each property. There were significant differences in the physical properties among the denture acrylics tested. Lucitone 199 demonstrated the highest impact strength, flexural strength, and yield distance (p<0.05). Lucitone 199 with an Izod impact strength of 5.5 ± 1.2 N·m, a flexural strength of 99.5 ± 4.5 MPa, and yield distance of 9.9 ± 0.76 mm exhibited statistically greater results than Fricki Hi-I, ProBase Hot, and Sledgehammer Maxipack. Fricki Hi- I with a yield distance of 7.3 ± 1.1 mm was statically greater than ProBase Hot and Sledgehammer Maxipack. Fricki Hi-I, ProBase Hot, and Sledgehammer Maxipack were statistically similar for the Izod impact strength and flexural strength tests performed. ProBase Hot and Sledgehammer Maxipack yielded statistically similar results for all tests performed. Flexural modulus had an inverse relationship to the impact strength, flexural strength, and yield distance. Citation Meng TR, Latta MA. Physical Properties of Four Acrylic Denture Base Resins. J Contemp Dent Pract 2005 November;(6)4:093-100.


2012 ◽  
Vol 576 ◽  
pp. 390-393 ◽  
Author(s):  
J. Awanis ◽  
S. Anis Sofia ◽  
Noorasikin Samat

This study shows the effect of using 3-aminopropyltriethoxysilane (APS) and maleic anhydride-grafted polypropylene (MAPP) as coupling agent on composite of RPP/MCC fiber. The compositions of MCC were varied from 0, 2, 4, 8 and 12 wt%. The compounded samples were prepared into test specimens by using injection moulding. The RPP/MCC composites with and without the coupling agent were characterized through mechanical testing of flexural and impact test. The incorporation of the modified MCC was found to increase the modulus and flexural strength. The flexural test indicates that the addition of 4 wt% MCC-APS and 8 wt% MCC-MAPP significantly increased the flexural strength of the RPP composite compared to the unmodified MCC. The impact test shows higher impact strength at 4 wt% of RPP/MCC-APS and 2 wt% of RPP/MCC-MAPP, respectively.


2018 ◽  
Vol 27 (2) ◽  
pp. 43-54 ◽  
Author(s):  
JR Robledo-Ortíz ◽  
AS Martín del Campo ◽  
EJ López-Naranjo ◽  
M Arellano ◽  
CF Jasso-Gastinel ◽  
...  

In this work, three different nanoclays (1.44P, 1.34MN, and Cloisite 15A) were used to reinforce an injection grade poly(lactic acid) (PLA). The nanocomposites (NCs) were prepared using three different nanoclay concentration levels (1, 3, and 5 wt%) in a twin-screw extruder. To evaluate their mechanical performance (static and dynamic tests) and thermal properties, the respective samples were obtained by injection molding. Results showed that the three nanoclays significantly increased the tensile and flexural modulus of the injection grade PLA. The 1.34MN NCs also showed improvement in the tensile strength. An increment in flexural strength was obtained with 1.34MN and 1.44P nanoclays, while with nanoclay 15A, the flexural strength decreased. Additionally, the use of 5 wt% of 1.44P nanoclay allowed an increase in impact strength while using 1.34MN and 15A nanoclays, the impact strength was similar to the one observed for pure PLA. In general, mechanodynamic analysis results showed that storage modulus increased with nanoclay content; while thermogravimetric analysis indicated that none of the nanoclays has a significant effect over the degradation temperature of pure PLA. Differential scanning calorimetry results showed that the crystallinity of PLA is enhanced with nanoclay inclusion. For 1.34MN NCs, X-ray diffraction observations exposed that the mineral clay relative intensity peaks disappeared indicating nanoclay exfoliation, which contributes to the increase in tensile and flexural strength in the NCs. Nevertheless for 1.44P and 15A nanoclays, an increase in the interlayer distance (intercalation) was detected.


2014 ◽  
Vol 910 ◽  
pp. 153-156
Author(s):  
Ching Wen Lou ◽  
Jo Mei Liao ◽  
Zheng Lan Lin ◽  
Jia Horng Lin

This study uses carbon fibers (CF) to reinforce polylactic acid (PLA) matrices to form CF/PLA biocomposites. Tensile test, flexural test, and impact test are performed on biocomposites to evaluate their mechanical properties. The results of tests show that an increment of the CF content results in an increase in tensile strength, flexural strength, flexural modulus, and impact strength. The combination of 15 wt% CF provides the resulting biocomposites with a 72 % increase in tensile strength, a 322 % increase in flexural modulus, and a 96 % increase in impact strength.


2020 ◽  
Vol 38 (7A) ◽  
pp. 960-966
Author(s):  
Aseel M. Abdullah ◽  
Hussein Jaber ◽  
Hanaa A. Al-Kaisy

In the present study, the impact strength, flexural modulus, and wear rate of poly methyl methacrylate (PMMA) with eggshell powder (ESP) composites have been investigated. The PMMA used as a matrix material reinforced with ESP at two different states (including untreated eggshell powder (UTESP) and treated eggshell powder (TESP)). Both UTESP and TESP were mixed with PMMA at different weight fractions ranged from (1-5) wt.%. The results revealed that the mechanical properties of the PMMA/ESP composites were enhanced steadily with increasing eggshell contents. The samples with 5 wt.% of UTESP and TESP additions give the maximum values of impact strength, about twice the value of the pure PMMA sample. The calcination process of eggshells powders gives better properties of the PMMA samples compared with the UTESP at the same weight fraction due to improvements in the interface bond between the matrix and particles. The wear characteristics of the PMMA composites decrease by about 57% with increases the weight fraction of TESP up to 5 wt.%. The flexural modulus values are slightly enhanced by increasing of the ESP contents in the PMMA composites.


Author(s):  
Zahid Iqbal Khan ◽  
Zurina Binti Mohamad ◽  
Abdul Razak Bin Rahmat ◽  
Unsia Habib ◽  
Nur Amira Sahirah Binti Abdullah

This work explores a novel blend of recycled polyethylene terephthalate/polyamide 11 (rPET/PA11). The blend of rPET/PA11 was introduced to enhance the mechanical properties of rPET at various ratios. The work’s main advantage was to utilize rPET in thermoplastic form for various applications. Three different ratios, i.e. 10, 20 and 30 wt.% of PA11 blend samples, were prepared using a twin-screw extruder and injection moulding machine. The mechanical properties were examined in terms of tensile, flexural and impact strength. The tensile strength of rPET was improved more than 50%, while the increase in tensile strain was observed 42.5% with the addition of 20 wt.% of PA11. The improved properties of the blend were also confirmed by the flexural strength of the blends. The flexural strength was increased from 27.9 MPa to 48 MPa with the addition of 30 wt.% PA11. The flexural strain of rPET was found to be 1.1%. However, with the addition of 10, 20 and 30 wt.% of PA11, the flexural strain was noticed as 1.7, 2.1, and 3.9% respectively. The impact strength of rPET/PA11 at 20 wt.% PA11 was upsurged from 110.53 to 147.12 J/m. Scanning electron microscopy analysis revealed a dispersed PA11 domain in a continuous rPET matrix morphology of the blends. This work practical implication would lead to utilization of rPET in automobile, packaging, and various industries.


2014 ◽  
Vol 879 ◽  
pp. 90-95 ◽  
Author(s):  
Abdul Rahman Noor Leha ◽  
Nor Amalina Nordin

Biocomposite from bamboo powder was fabricated by compression molding technique. The objective of this study was to investigate the mechanical properties of bamboo compounded with epoxy with different ratio. Tensile and flexural tests were done to characterize its mechanical properties. It was observed that the strength of bamboo-polyester was increased with increasing amount of bamboo powder. The tensile and flexural strength shows the highest value at 25 wt.% bamboo. However, the impact test shows the maximum value at 20 wt.% bamboo powder. These results exhibit the bamboo-polyester can be a good candidate to be used in many engineering applications


2016 ◽  
Vol 838 ◽  
pp. 29-35
Author(s):  
Michał Landowski ◽  
Krystyna Imielińska

Flexural strength and low velocity impact properties were investigated in terms of possibile improvements due to epoxy matrix modification by SiO2 nanoparticles (1%, 2%, 3%, 5%, 7%wt.) in glass/epoxy laminates formed using hand lay-up method. The matrix resin was Hexion L285 (DGEBA) with Nanopox A410 - SiO2 (20 nm) nanoparticle suspension in the base epoxy resin (DGEBA) supplied by Evonic. Modification of epoxy matrix by variable concentrations of nanoSiO2 does not offer significant improvements in the flexural strength σg, Young’s modulus E and interlaminar shear strength for 1% 3% and 5% nanoSiO2 and for 7% a slight drop (up to ca. 15-20%) was found. Low energy (1J) impact resistance of nanocomposites represented by peak load in dynamic impact characteristics was not changed for nanocompoosites compared to the unmodified material. However at higher impact energy (3J) nanoparticles appear to slightly improve the impact energy absorption for 3% and 5%. The absence or minor improvements in the mechanical behaviour of nanocomposites is due to the failure mechanisms associated with hand layup fabrication technique: (i.e. rapid crack propagation across the extensive resin pockets and numerous pores and voids) which dominate the nanoparticle-dependent crack energy absorption mechanisms (microvoids formation and deformation).


2017 ◽  
Vol 2 (3) ◽  
pp. 226-231
Author(s):  
Basim M. Fadhil ◽  
Payman Sahbah Ahmed ◽  
Ava Ali Kamal

Impact characteristics of Epoxy matrix composites is investigated by impact machine. Four different types of reinforcement are used in the experimental works: type one: 1.9wt% steel fiber, 1.9wt% carbon fiber,1.9 wt% carbon nanotube, 1.9 wt% woven carbon fiber.This work shows that reinforcing epoxy with (1.9 wt% of woven carbon fiber) improves the impact properties where energy, force and deformation values of impact test for this composite were 18.4J, 3580.59 N and 18 mm respectively while for epoxy were 2.927 J, 921.849 N and 18.413 mm respectively.


Sign in / Sign up

Export Citation Format

Share Document