The Effect of Deformation and Irradiation with High-Energy Krypton Ions on the Structure and Phase Composition of Reactor Steels

2013 ◽  
Vol 702 ◽  
pp. 88-93
Author(s):  
Alyona Russakova ◽  
Darya Alontseva ◽  
Tatyana Kolesnikova

The paper presents some results of a complex research of 12Cr18Ni10Ti stainless steel in the initial, deformed and irradiated ( 8436Kr+14, E=130MeV, Fmax=9x1015 ions/сm2) states using magnetometry, X-ray diffraction (XRD) and scanning electron microscopy (SEM) with electron backscattered diffraction (EBSD – analysis). Application of the EBSD method revealed differences between the non-irradiated and irradiated 12Cr18Ni10Ti steel specimens consisting in the fact that in the surface layer of an irradiated sample α-and ε - phases are formed. It was established that the fluence value affects the amount of magnetic α-phase. The study of the martensite α-phase morphology showed that in the deformed steel specimens there is αʹ- martensite of two scale levels.

2016 ◽  
Vol 849 ◽  
pp. 251-258 ◽  
Author(s):  
Lu Yao Tang ◽  
Jin Shan Li ◽  
Hong Chao Kou ◽  
Xu Yan ◽  
Bin Tang ◽  
...  

In this work, a 1600 tons forging machine was employed to conduct forging on the Ti-6Al-4V alloy. The microstructural and textural evolution of forged alloy were investigated by optical microscopy (OM), scanning electron microscopy (SEM), electron backscattered diffraction technique (EBSD) and X-ray diffraction (XRD). The results showed that the lamellar α phase in the Ti-6Al-4V alloy changed into a spherical morphology, and the spheroidization rate and the structure uniformity increased with the increasing forging times. The largest pole density in each incomplete pole figure of the α phase decreased gradually and the high-angle grain boundaries (HAGBs) gradually turned to the low-angle grain boundaries (LAGBs), which indicated that the texture was reduced during the forging process.


2019 ◽  
Vol 969 ◽  
pp. 93-97
Author(s):  
S. Manivannan ◽  
B. Narenthiran ◽  
A. Sivanantham ◽  
S.P. Kumaresh Babu

The experimatal alloys were aged at different temperatures of 180°C, 200°C, 220°C, and 240º C with calcium addition levels of (X=0.5, 1, 1.5, 2%) on Mg-6Al-1Zn-XCa alloy were investigated in 3.5% NaCl solution. All the experimatal alloys were immersed in 3.5% NaCl solutions and the resulted surface were analyzed to study the corrosion behaviour and its surface topography by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersed spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The result shows that corrosion attack occurred predominantly on ß phase and α phase exhibit relatively minor corrosion. In addition to that the increased aging temperature coarsens the intermetallic as well as α- Mg grains, which shows adverse effect to corrosion resistances and the best result were obtained at composition of 0.5wt.% Ca aged at 200°C.


2019 ◽  
Vol 18 (03n04) ◽  
pp. 1940067
Author(s):  
P. Vitiaz ◽  
N. Lyakhov ◽  
T. Grigoreva ◽  
E. Pavlov

The interaction between a solid inert metal Ir and an active liquid metal Ga during mechanical activation in a high-energy planetary mill is studied by X-ray diffraction and scanning electron microscopy with high-resolution energy dispersive X-ray microanalysis. The effect of mechanical activation on the formation of GaxIry intermetallic compounds and GaxIry/Ir composites and their solubility in acids was investigated. The subsequent extraction of Ga from intermetallic compounds and composites in the mixture of concentrated acids [Formula: see text] makes it possible to produce nanoscale Ir.


2015 ◽  
Vol 1120-1121 ◽  
pp. 572-575
Author(s):  
Hong Wei Liu ◽  
Feng Wang ◽  
Qiang Zhang ◽  
Xi Wu Li ◽  
Zhi Hui Li ◽  
...  

An innovative spray deposition technique has been applied to produce in situ TiB2/Zn-30Al-1Cu composites. The microstructures of the spray-deposited composite were studied using optical microscopy, scanning electron microscopy, and X-ray diffraction. Both theoretical and experimental results have shown that the TiB2particulates are formed in the microstructure. It was found that the TiB2particles were distributed in Zn-30Al-1Cu matrix uniformly, and the TiB2particles are about 2 μm in size. Moreover, the presence of the TiB2particles was led to increasing of α’ phase with less 2 μm size in the composites which have a tendency to decompose to α+η structure.


2014 ◽  
Vol 802 ◽  
pp. 457-461 ◽  
Author(s):  
José Hélio Duvaizem ◽  
N.M.F. Mendes ◽  
J.C.S. Casini ◽  
A.H. Bressiani ◽  
H. Takiishi

Ti-13Nb-13Zr alloy produced via powder metallurgy was submitted to heat treatment under various conditions and the effects on microstructure and elastic modulus were investigated. Heat treatment was performed using temperatures above and below α/β transus combined with different cooling rates – furnace cooling and water quenching. Microstructure and phases were analyzed employing scanning electron microscopy and X-ray diffraction. Elastic Modulus was determined using a dynamic mechanical analyzer (DMA). The results indicated that α phase precipitation and elastic modulus values increased after heat treatment performed using temperature below α/β transus. However, when it was performed above α/β transus and using higher cooling rate, a decrease in elastic modulus was observed despite higher α phase precipitation, indicating that the microstructural modifications observed via SEM, due to the presence of martensitic α phase, influenced on elastic modulus values.


1980 ◽  
Vol 1 ◽  
Author(s):  
J. T. Schott ◽  
J. J. Comer

ABSTRACTVarious characterization techniques are applied to pulsed and cw laser-annealed polysilicon layers deposited on oxide layers. The results are used to compare these techniques as to the type and completeness of information provided, as well as sample preparation requirements and general ease or difficulty of measurement. The techniques employed include scanning electron microscopy (SEM), electron channeling micrographs and selected area channeling patterns (SACP), reflection (high energy) electron diffraction (RHEED), transmission electron microscopy (TEM) and selected area diffraction (SAD), x-ray diffraction, optical techniques and etching techniques.


Metals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1194 ◽  
Author(s):  
Kristína Bartha ◽  
Josef Stráský ◽  
Anna Veverková ◽  
Pere Barriobero-Vila ◽  
František Lukáč ◽  
...  

Ti15Mo metastable beta Ti alloy was solution treated and subsequently deformed by high-pressure torsion (HPT). HPT-deformed and benchmark non-deformed solution-treated materials were annealed at 400 °C and 500 °C in order to investigate the effect of UFG microstructure on the α-phase precipitation. Phase evolution was examined using laboratory X-ray diffraction (XRD) and by high-energy synchrotron X-ray diffraction (HEXRD), which provided more accurate measurements. Microstructure was observed by scanning electron microscopy (SEM) and microhardness was measured for all conditions. HPT deformation was found to significantly enhance the α phase precipitation due the introduction of lattice defects such as dislocations or grain boundaries, which act as preferential nucleation sites. Moreover, in HPT-deformed material, α precipitates are small and equiaxed, contrary to the α lamellae in the non-deformed material. ω phase formation is suppressed due to massive α precipitation and consequent element partitioning. Despite that, HPT-deformed material after ageing exhibits the high microhardness exceeding 450 HV.


2006 ◽  
Vol 509 ◽  
pp. 141-146
Author(s):  
E. Martínez-Franco ◽  
Thomas Klassen ◽  
Rüdiger Bormann ◽  
D. Jaramillo-Vigueras

Nanocrystalline intermetallic Mg2Ni is successfully produced on a batch production scale from elemental powder blends by mechanical alloying using a high-energy rotor ball mill (Simoloyer). Different ball-to-powder mass ratios are used in order to provide results for scaling to industrial production. Transformation of elemental Mg-Ni powders into the Mg2Ni intermetallic is observed by x-ray diffraction. Particle morphology during milling is observed by scanning electron microscopy. A relatively low Fe contamination is estimated by energy dispersive spectrometry.


2019 ◽  
Vol 946 ◽  
pp. 287-292
Author(s):  
Alexander Thoemmes ◽  
Ivan V. Ivanov ◽  
Alexey Ruktuev

The effect of Nb content on microstructure, mechanical properties and phase formation in as-melt and annealed binary Ti-Nb alloys were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) analysis. The content of Nb varied in the range 25-35 mass % leading to significant changes in the microstructure. The annealed and furnace-cooled binary Ti-Nb samples exhibited HCP martensitic α` phase at a Nb content below 27.5 mass % and metastable BCC β phase at higher contents of Nb. The mechanical properties of alloys depended strongly on the Nb content and type of the dominating phase.


2018 ◽  
Vol 769 ◽  
pp. 29-34 ◽  
Author(s):  
Alexander Thoemmes ◽  
Ivan V. Ivanov ◽  
Adelya A. Kashimbetova

The effect of Nb content on microstructure, mechanical properties and phase formation in annealed and quenched binary Ti-Nb alloys were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) analysis. The content of Nb varied in the range 0-37 mass % leading to significant changes in the microstructure. The annealed and furnace-cooled binary Ti-Nb samples exhibited HCP martensitic α` phase at a Nb content below 14 mass % and stable BCC β phase at higher contents of Nb. The structure of the quenched samples changed with increase of Nb content in the following order: coarse primary martensite → fine acicular (α`+α``) martensite → single β phase structure. The mechanical properties of alloys strongly depended on the Nb content and type of the dominating phase.


Sign in / Sign up

Export Citation Format

Share Document