Microstructural Evolution during Forging of Ti-6Al-4V Alloy

2016 ◽  
Vol 849 ◽  
pp. 251-258 ◽  
Author(s):  
Lu Yao Tang ◽  
Jin Shan Li ◽  
Hong Chao Kou ◽  
Xu Yan ◽  
Bin Tang ◽  
...  

In this work, a 1600 tons forging machine was employed to conduct forging on the Ti-6Al-4V alloy. The microstructural and textural evolution of forged alloy were investigated by optical microscopy (OM), scanning electron microscopy (SEM), electron backscattered diffraction technique (EBSD) and X-ray diffraction (XRD). The results showed that the lamellar α phase in the Ti-6Al-4V alloy changed into a spherical morphology, and the spheroidization rate and the structure uniformity increased with the increasing forging times. The largest pole density in each incomplete pole figure of the α phase decreased gradually and the high-angle grain boundaries (HAGBs) gradually turned to the low-angle grain boundaries (LAGBs), which indicated that the texture was reduced during the forging process.

2013 ◽  
Vol 702 ◽  
pp. 88-93
Author(s):  
Alyona Russakova ◽  
Darya Alontseva ◽  
Tatyana Kolesnikova

The paper presents some results of a complex research of 12Cr18Ni10Ti stainless steel in the initial, deformed and irradiated ( 8436Kr+14, E=130MeV, Fmax=9x1015 ions/сm2) states using magnetometry, X-ray diffraction (XRD) and scanning electron microscopy (SEM) with electron backscattered diffraction (EBSD – analysis). Application of the EBSD method revealed differences between the non-irradiated and irradiated 12Cr18Ni10Ti steel specimens consisting in the fact that in the surface layer of an irradiated sample α-and ε - phases are formed. It was established that the fluence value affects the amount of magnetic α-phase. The study of the martensite α-phase morphology showed that in the deformed steel specimens there is αʹ- martensite of two scale levels.


2019 ◽  
Vol 969 ◽  
pp. 93-97
Author(s):  
S. Manivannan ◽  
B. Narenthiran ◽  
A. Sivanantham ◽  
S.P. Kumaresh Babu

The experimatal alloys were aged at different temperatures of 180°C, 200°C, 220°C, and 240º C with calcium addition levels of (X=0.5, 1, 1.5, 2%) on Mg-6Al-1Zn-XCa alloy were investigated in 3.5% NaCl solution. All the experimatal alloys were immersed in 3.5% NaCl solutions and the resulted surface were analyzed to study the corrosion behaviour and its surface topography by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersed spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The result shows that corrosion attack occurred predominantly on ß phase and α phase exhibit relatively minor corrosion. In addition to that the increased aging temperature coarsens the intermetallic as well as α- Mg grains, which shows adverse effect to corrosion resistances and the best result were obtained at composition of 0.5wt.% Ca aged at 200°C.


2015 ◽  
Vol 1120-1121 ◽  
pp. 572-575
Author(s):  
Hong Wei Liu ◽  
Feng Wang ◽  
Qiang Zhang ◽  
Xi Wu Li ◽  
Zhi Hui Li ◽  
...  

An innovative spray deposition technique has been applied to produce in situ TiB2/Zn-30Al-1Cu composites. The microstructures of the spray-deposited composite were studied using optical microscopy, scanning electron microscopy, and X-ray diffraction. Both theoretical and experimental results have shown that the TiB2particulates are formed in the microstructure. It was found that the TiB2particles were distributed in Zn-30Al-1Cu matrix uniformly, and the TiB2particles are about 2 μm in size. Moreover, the presence of the TiB2particles was led to increasing of α’ phase with less 2 μm size in the composites which have a tendency to decompose to α+η structure.


2014 ◽  
Vol 802 ◽  
pp. 457-461 ◽  
Author(s):  
José Hélio Duvaizem ◽  
N.M.F. Mendes ◽  
J.C.S. Casini ◽  
A.H. Bressiani ◽  
H. Takiishi

Ti-13Nb-13Zr alloy produced via powder metallurgy was submitted to heat treatment under various conditions and the effects on microstructure and elastic modulus were investigated. Heat treatment was performed using temperatures above and below α/β transus combined with different cooling rates – furnace cooling and water quenching. Microstructure and phases were analyzed employing scanning electron microscopy and X-ray diffraction. Elastic Modulus was determined using a dynamic mechanical analyzer (DMA). The results indicated that α phase precipitation and elastic modulus values increased after heat treatment performed using temperature below α/β transus. However, when it was performed above α/β transus and using higher cooling rate, a decrease in elastic modulus was observed despite higher α phase precipitation, indicating that the microstructural modifications observed via SEM, due to the presence of martensitic α phase, influenced on elastic modulus values.


2013 ◽  
Vol 747-748 ◽  
pp. 613-618
Author(s):  
Qiao Zhang ◽  
Shu Hua Liang ◽  
Chen Zhang ◽  
Jun Tao Zou

The as-cast Ni-W alloys with 15wt%W, 25wt%W and 30wt%W were annealed in hydrogen at 1100. The effect of the annealing time on the microstructure of Ni-W alloys was studied, and the phase constituents and microstructure of annealed Ni-W alloys were characterized by the X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that no any phase changed for Ni-15%W, Ni-25%W and Ni-30%W alloys annealed for 60 min, 90 min and 150 min, which were still consisted of single-phase Ni (W) solid solution. However, microstructure had a significant change after annealing. With increase of annealing time, the microstructure of Ni-15%W alloy became more uniform after annealing for 90 min, and the average grain size was 95μm, whereas the grain size of Ni-15%W alloy increased significantly after annealing for 150 min. For Ni-25%W and Ni-30%W, there was no obvious change on the grain size with increase of annealing time, and the amount of oxides at grain boundaries gradually reduced. After annealing for 150 min, the impurities at grain boundaries almost disappeared. Subsequently, the annealing at 1100 for 150 min was beneficial for the desired microstructure of Ni-25%W and Ni-30%W alloys.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1515
Author(s):  
Halyna Klym ◽  
Ivan Karbovnyk ◽  
Andriy Luchechko ◽  
Yuriy Kostiv ◽  
Viktorija Pankratova ◽  
...  

BaGa2O4 ceramics doped with Eu3+ ions (1, 3 and 4 mol.%) were obtained by solid-phase sintering. The phase composition and microstructural features of ceramics were investigated using X-ray diffraction and scanning electron microscopy in comparison with energy-dispersive methods. Here, it is shown that undoped and Eu3+-doped BaGa2O4 ceramics are characterized by a developed structure of grains, grain boundaries and pores. Additional phases are mainly localized near grain boundaries creating additional defects. The evolution of defect-related extended free volumes in BaGa2O4 ceramics due to the increase in the content of Eu3+ ions was studied using the positron annihilation lifetime spectroscopy technique. It is established that the increase in the number of Eu3+ ions in the basic BaGa2O4 matrix leads to the agglomeration of free-volume defects with their subsequent fragmentation. The presence of Eu3+ ions results in the expansion of nanosized pores and an increase in their number with their future fragmentation.


2019 ◽  
Vol 83 (5) ◽  
pp. 639-644
Author(s):  
Olga Y. Plotinskaya ◽  
Vladimir V. Shilovskikh ◽  
Jens Najorka ◽  
Elena V. Kovalchuk ◽  
Reimar Seltmann ◽  
...  

AbstractMolybdenite from two porphyry copper mineralisation sites within the South Urals was studied by electron microprobe (EMPA), micro x-ray diffraction (μXRD) and electron backscattered diffraction (EBSD) methods. Elevated contents of rhenium (0.2 to 0.4, sometimes up to 1.1 wt.%) form linear zones from several to tens of micrometres wide and up to hundreds of micrometres long parallel to the elongation of molybdenite flakes. In most cases Re-rich zones are composed of the rhombohedral (3R) polytype of molybdenite, while the rest of the molybdenite flakes with ca. 0.1 wt.% of Re consist of hexagonal (2H) molybdenite. In rare cases Re-rich zones are confined to grain boundaries of molybdenite-2H. It is shown that both μXRD and EBSD are the most appropriate tools to distinguish different polytypes within a single grain of molybdenite.


2019 ◽  
Vol 946 ◽  
pp. 287-292
Author(s):  
Alexander Thoemmes ◽  
Ivan V. Ivanov ◽  
Alexey Ruktuev

The effect of Nb content on microstructure, mechanical properties and phase formation in as-melt and annealed binary Ti-Nb alloys were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) analysis. The content of Nb varied in the range 25-35 mass % leading to significant changes in the microstructure. The annealed and furnace-cooled binary Ti-Nb samples exhibited HCP martensitic α` phase at a Nb content below 27.5 mass % and metastable BCC β phase at higher contents of Nb. The mechanical properties of alloys depended strongly on the Nb content and type of the dominating phase.


2005 ◽  
Vol 488-489 ◽  
pp. 495-498 ◽  
Author(s):  
Xuefeng Guo ◽  
Jacob Kinstler ◽  
Lilia Glazman ◽  
Dan Shechtman

Based on the commercial alloy ZK60 which contains 6%Zn, high strength Mg-6.0%Zn-1.0%Y-0.6%Ce-0.6%Zr magnesium alloy bars of 10 to 50 mm in diameters were prepared by rapid solidification (RS) and extrusion processes (RSE). For those RSE solid bars, the ultimate tensile strengths steadily maintain on a level of 490 to 520 MPa, the elongations are between 6 to 10%. The HV50 hardness is between 85 and 90. In order to reveal materials microstructures both RS ribbons and RSE solid bars, the Mg-6.0%Zn-1.0%Y-0.6%Ce-0.6%Zr alloy was analyzed with an optical microscopy (OM), a scanning electron microscopy (SEM) equipped with an energy-dispersive X-ray spectrometer (EDS) and an X-ray diffraction apparatus. It was found that the microstructure of the RS ribbon consists of super saturated (Mg) solid solution; thermally stable Mg3Y2Zn3 (W) and Mg7Ce2 intermetallic compound particles which uniformly dispersed interior grains and W and Mg7Ce2 compound networks at grain boundaries. After extrusion, the microstructure of RSE Mg-6.0%Zn-1.0%Y-0.6%Ce-0.6%Zr solid bar consists of the same phases as the RS ribbons. The networks existing at RS ribbon’s grain boundaries were break up into submicron particles and dispersed uniformly on the matrix formed after extrusion.


2018 ◽  
Vol 769 ◽  
pp. 29-34 ◽  
Author(s):  
Alexander Thoemmes ◽  
Ivan V. Ivanov ◽  
Adelya A. Kashimbetova

The effect of Nb content on microstructure, mechanical properties and phase formation in annealed and quenched binary Ti-Nb alloys were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) analysis. The content of Nb varied in the range 0-37 mass % leading to significant changes in the microstructure. The annealed and furnace-cooled binary Ti-Nb samples exhibited HCP martensitic α` phase at a Nb content below 14 mass % and stable BCC β phase at higher contents of Nb. The structure of the quenched samples changed with increase of Nb content in the following order: coarse primary martensite → fine acicular (α`+α``) martensite → single β phase structure. The mechanical properties of alloys strongly depended on the Nb content and type of the dominating phase.


Sign in / Sign up

Export Citation Format

Share Document