Pilot Scale Evaluation of Pellet Fluidized Bed Process for the Conditioning of Alum Sludge

2013 ◽  
Vol 726-731 ◽  
pp. 530-534
Author(s):  
Gang Zhang ◽  
Li Qing Zhang

As a burgeoning technology based on conventional clarifier technology, pellet fluidized bed (PFB) technology has been widely applied in kinds of high SS water treatment process. In this paper, PFB process was used to thicken the alum sludge in a water plant in south China with scale of 1.0~2.5m3/h. The experimental results showed that, increasing flocculent (PAM) dosage could decrease outlet turbidity, and average up pellets settling behavior. Under the experimental condition, there exist negatively linear relationship between process maximum flow rate which ranged from 1.6m3/h to 2.2 m3/h and raw sludge concentration. Moreover, because of the improvement of pH environment and flocs chemical structure, additional lime dosage would enhance maximum surface loading and save PAM dosage. The pilot scale experiment proved that by applying PFB, alum sludge conditioning could achieve satisfied results characterised by high surface loading, low outlet turbidity, and high concentration thicken sludge with fine dewaterability.

1987 ◽  
Vol 19 (1-2) ◽  
pp. 287-298 ◽  
Author(s):  
M. Yoda ◽  
S. W. Shin ◽  
A. Watanabe ◽  
M. Watanabe ◽  
M. Kitagawa ◽  
...  

The goal of this study is to find the operational conditions for establishing a dynamic balance between the microbial growth and loss in the anaerobic fluidized bed process. Such operation is very attractive because there is no necessity of complicated bed and biofilm control or costly excess sludge treatment and disposal. Several factors which control the dynamic balance were identified and experimentally determined using laboratory scale anaerobic fluidized beds. Based upon the knowledge accumulated through the laboratory experiments, a pilot scale anaerobic fluidized bed (1.0 m ID × 6.85 m H) was installed at a soft-drink bottling plant and successfully operated for nine months. The stable microbial mass along with low effluent organic concentration demonstrated the feasibility of the anaerobic fluidized bed treatment with a steady-state biofilm.


2016 ◽  
Vol 17 (3) ◽  
pp. 643-651 ◽  
Author(s):  
Rui-zhu Hu ◽  
Ting-lin Huang ◽  
Gang Wen ◽  
Shang-ye Yang

Pellet fluidized bed reactors have been widely used to soften water. Reports from laboratory-scale research on the particle growth kinetics of calcium carbonate in pellet reactors have been put forward. However, the reports have not been comprehensive as they only consider the influence of supersaturation on the calcium carbonate growth process. The influence of three factors, namely, the superficial velocity (SV), particle size (L0), and supersaturation (S) on the particle growth rate of calcium carbonate were investigated in a pilot-scale study, and two models of particle growth rate and fixed bed height growth rate were built. The linear particle growth model G = 3.90 × 10−SV1.93L0−1.56S2.13 at the bottom of the pellet reactor was built based on a pilot-scale study of particle growth kinetics influenced by SV, L0, and S. The growth of the fixed bed height is closely related to the particle growth and also influenced by the three factors. The fixed bed growth model Rh = 5.19 × 10−8SV1.65L0−0.93S2.58 also incorporates SV, L0, and S, and provides a method for calculating the fixed bed height. The two models were built based on the pilot-scale experiment and were different from those previously reported. They are applicable as pellet discharge guides and are used in the management of pellet reactors.


2002 ◽  
Vol 45 (10) ◽  
pp. 225-230 ◽  
Author(s):  
T. Tagawa ◽  
H. Takahashi ◽  
Y. Sekiguchi ◽  
A. Ohashi ◽  
H. Harada

An on-site pilot-scale experiment was conducted to investigate the performance of a multi-staged UASB (MS-UASB) reactor by feeding with a food processing wastewater containing high strength of lipid and protein. The reactor was operated at a thermophilic condition (55°C) for a period of 600 days. The reactor finally achieved 50 kgCOD·m−3ád−1 with a soluble COD removal of 90% (based on the influent total COD versus the effluent filtered COD), while the overall COD removal (based on the effluent COD-total) was considerably unsatisfactory at around only 60–70%. The presence of high strength of lipid and protein along with high concentration of Mg and Ca ions in the raw wastewater caused a severe scum and/or insolubilized substance formation within the UASB sludge bed, resulting in hindering the contact efficiency between substrate and sludge. The replacement of active microbial granules in the sludge bed with the insolubilized protein and lipid brought about deterioration of sludge methanogenic activity.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 1999-2002 ◽  
Author(s):  
N. Iwami ◽  
A. Imai ◽  
Y. Inamori ◽  
R. Sudo

The microorganism-attached activated carbon fluidized bed (MAACFB) process was applied to treat a landfill leachate containing refractory organics and a high concentration of ammonium nitrogen. The MAACFB process removed about 60 % and 70 % of refractory organics and nitrogen, respectively, from the landfill leachate simultaneously and steadily over a more than 700 days of operation period. A mass balance on organics around the MAACFB process revealed that more than 90 % of the removed organics may be biodegraded. It was suggested that the MAACFB process is highly effective in biodegrading the refractory organics in landfill leachate.


Author(s):  
Kailun Yang ◽  
Recep Kas ◽  
Wilson A. Smith

<p>This study evaluated the performance of the commonly used strong buffer electrolytes, i.e. phosphate buffers, during CO<sub>2</sub> electroreduction in neutral pH conditions by using in-situ surface enhanced infrared absorption spectroscopy (SEIRAS). Unfortunately, the buffers break down a lot faster than anticipated which has serious implications on many studies in the literature such as selectivity and kinetic analysis of the electrocatalysts. Increasing electrolyte concentration, surprisingly, did not extend the potential window of the phosphate buffers due to dramatic increase in hydrogen evolution reaction. Even high concentration phosphate buffers (1 M) break down within the potentials (-1 V vs RHE) where hydrocarbons are formed on copper electrodes. We have extended the discussion to high surface area electrodes by evaluating electrodes composed of copper nanowires. We would like highlight that it is not possible to cope with high local current densities on these high surface area electrodes by using high buffer capacity solutions and the CO<sub>2</sub> electrocatalysts are needed to be evaluated by casting thin nanoparticle films onto inert substrates as commonly employed in fuel cell reactions and up to now scarcely employed in CO<sub>2</sub> electroreduction. In addition, we underscore that normalization of the electrocatalytic activity to the electrochemical active surface area is not the ultimate solution due to concentration gradient along the catalyst layer.This will “underestimate” the activity of high surface electrocatalyst and the degree of underestimation will depend on the thickness, porosity and morphology of the catalyst layer. </p> <p> </p>


2004 ◽  
Vol 4 (5-6) ◽  
pp. 21-28
Author(s):  
S.-C. Kim ◽  
D.-K. Lee

TiO2-coated granular activated carbon was employed for the removal of toxic microcystin-LR from water. High surface area of the activated carbon provided sites for the adsorption of microcystin-LR, and the adsorbed microcystin-LR migrated continuously onto the surface of TiO2 particles which located mainly at the exterior surface in the vicinity of the entrances of the macropores of the activated carbon. The migrated microcystin-LR was finally degraded into nontoxic products and CO2 very quickly. These combined roles of the activated carbon and TiO2 showed a synergistic effect on the efficient degradation of toxic microcystin-LR. A continuous flow fluidized bed reactor with the TiO2-coated activated carbon could successfully be employed for the efficient photocatalytic of microcystin-LR.


1985 ◽  
Vol 20 (2) ◽  
pp. 55-67
Author(s):  
W.B. Anderson ◽  
P.M. Huck ◽  
T.M.R. Meadley ◽  
T.P. Hynes

Abstract This paper describes the on-going pilot scale development of a new treatment process designed to remove radium-226 from uranium milling effluents. Presently, decants from Canadian uranium mining and milling tailings areas are treated with barium chloride to remove radium-226 prior to discharge into the environment. This is usually accomplished in large natural or man-made ponds which provide an opportunity for a (Ba,Ra)SO4 precipitate to form and subsequently settle. Sand filtration is sometimes used as a polishing step. This new process differs from conventional and other experimental processes in that it involves the use of a fluidized bed to facilitate the deposition of a (Ba,Ra)SO4 precipitate on a granular medium of high surface area. As a stand-alone treatment process, the new process is consistently able to reduce incoming radium-226 activity levels by 90-99%. Effluent levels of 10 pCi/L (0.370 Bq/L) or less have been achieved, depending on the influent activity levels. Recent testing of the process as a polishing step has demonstrated radium removal efficiencies up to 60% when the process influent was already less than 5 pCi/L (0.185 Bq/L). The process has been operated at temperatures ranging from 26°C down to 0.3°C with no reduction in efficiency. In contrast to treatment times in the order of days for conventional settling pond systems and hours for mechanical stirred tank/filtration systems, the new process is able to achieve these radium removal efficiencies in times on the order of one minute.


2000 ◽  
Vol 42 (5-6) ◽  
pp. 371-376 ◽  
Author(s):  
J.A. Puhakka ◽  
K.T. Järvinen ◽  
J.H. Langwaldt ◽  
E.S. Melin ◽  
M.K. Männistö ◽  
...  

This paper reviews ten years of research on on-site and in situ bioremediation of chlorophenol contaminated groundwater. Laboratory experiments on the development of a high-rate, fluidized-bed process resulted in a full-scale, pump-and-treat application which has operated for several years. The system operates at ambient groundwater temperature of 7 to 9°C at 2.7 d hydraulic retention time and chlorophenol removal efficiencies of 98.5 to 99.9%. The microbial ecology studies of the contaminated aquifer revealed a diverse chlorophenol-degrading community. In situ biodegradation of chlorophenols is controlled by oxygen availability, only. Laboratory and pilot-scale experiments showed the potential for in situ aquifer bioremediation with iron oxidation and precipitation as a potential problem.


Energy ◽  
2021 ◽  
Vol 219 ◽  
pp. 119604
Author(s):  
Francesco Parrillo ◽  
Filomena Ardolino ◽  
Gabriele Calì ◽  
Davide Marotto ◽  
Alberto Pettinau ◽  
...  

2010 ◽  
Vol 150-151 ◽  
pp. 753-757 ◽  
Author(s):  
Xiong Hao Li ◽  
Yong Jie Xue ◽  
Min Zhou

This paper discussed the feasibility of unburned and non-autoclaved, steam cured bricks prepared by FGD byproducts from coal-fired power plants. The results show that FGD byproduct, aggregates, cementious materials and water could be used to prepare bricks during the process of stir and compaction under natural cure and steam cured condition. S4 and Z2 are the optimum design mixture composition. The maximum compressive strength and saturation coefficient are 28.7 MPa and 96.7%. FGD byproducts do no harm to environment and a pilot-scale experiment demonstrates that bricks made with FGDA can meet the MU10 level bricks technical requirement.


Sign in / Sign up

Export Citation Format

Share Document