Ionic Liquid Assisted Dispersion of Reduced Graphene Oxide in Epoxy Composites with Improved Mechanical Properties

2013 ◽  
Vol 738 ◽  
pp. 56-60 ◽  
Author(s):  
Yue E Liu ◽  
Cheng En He ◽  
Ren Gui Peng ◽  
Wei Tang ◽  
Ying Kui Yang

Graphene nanosheets were prepared by chemical reduction of the exfoliated graphite oxide using sodium borohydride (NaBH4). The graphene/epoxy composites were separately fabricated in the absence or presence of imidazolium-based ionic liquids, and their dynamic thermomechanical and tensile properties were studied. TEM examinations show that graphene sheets are well dispersed in the epoxy resin and have strong interface adhesion with the matrix due to the π-π and/or cation-π interactions between graphene and imidazolium ions. The composite fabricated by assistance of ionic liquids shows larger increases in Youngs modulus, tensile strength, storage modulus and glass transition temperature compared to the composite without using ionic liquids. This work provides a method for the fabrication of multifunctional graphene-based polymer composites.

2019 ◽  
Vol 814 ◽  
pp. 90-95 ◽  
Author(s):  
Guang Lei Lv ◽  
Yuan Yuan Li ◽  
Chen Fei ◽  
Zhi Hao Shan ◽  
Jing Gan ◽  
...  

Graphene nanosheets/polyurethane (GNS/PU) was prepared in situ by polymerization technique for the manufacture of PU safety shoes soles. The graphene nanosheets/polyurethane composites were characterized for their mechanical properties, thermal conductivity and abrasion resistance, and comparison is made with those of the neat polyurethane. The microstructural properties of GNS/PU were characterized by SEM. The results show that with the increase of the amount of graphene within the range of weight-percentages analyzed, the tensile strength of the composites gradually increases. The tensile strength of the GNS/PU composites increased to 64.14 MPa with 2 wt% GNS, compared with 55.1 MPa for neat PU. When the graphene sheets reached 2 wt%, the abrasion volume reached 71 mm3. Compared with the pure PU, the wear performance of GNS/PU composites was significantly improved.


2017 ◽  
Vol 6 (2) ◽  
pp. 47 ◽  
Author(s):  
Henny Pratiwi

The use of suitable waste products as raw materials has become an interesting matter in composite industry nowadays due to the environmental issues. Volcanic ash is one of the waste materials containing a high number of silica. The aim of this study is to examine the morphological and mechanical properties of Mt. Kelud volcanic ash reinforced polyester and epoxy composites. The volcano ash was dried and sieved into 50 mesh then mixed with polyester or epoxy manually for 10 minutes. The ash added into the matrix was varied by 0%, 10%, 20%, 30% and 40% from matrix volume content. For epoxy matrix, the composite with 40 vol. % particles has the highest tensile strength. However, for the polyester/ash composites, the tensile strength continues to decrease with the addition of particles. There is a significant increasing of 47.04 % for polyester and 5.62 % for epoxy in impact strength when 40 vol. % of volcanic ash added into both polymers. The Scanning Electron Microscopy result shows that there is void and agglomeration contained in epoxy/ash composites and crack propagation along the surface of polyester/ash composites that could be the cause of the failure.


2020 ◽  
Vol 29 ◽  
pp. 51-60
Author(s):  
Amr Osman ◽  
Abdelmoty Elhakeem ◽  
Saleh Kaytbay ◽  
Abdalla Ahmed

Nowadays, multi-functional materials are strongly needed to meet the requirements of next-generation electronic devices. In this work, two different nanostructured fillers, reduced graphene oxide (RGO) and nanoalumina, were chosen to study their effect on the thermal, electrical and mechanical properties of the prepared epoxy composites at different loadings (0.5 to 2 wt%). RGO was firstly prepared and characterized by XRD, Raman spectroscopy and TEM confirming its production. The results revealed that RGO showed excellent adhesion with the polymer. Whilst, alumina aggregated and debonded from the matrix, as confirmed by SEM images. Hence, at only 2 wt%, RGO/epoxy composites exhibited the highest thermal conductivity (0.391 W/m-K), which was 1.96 times higher than the neat epoxy. Whereas, the alumina/epoxy composites showed lower increment at the same loading (0.206 W/m-K). However, at 2 wt% RGO, electrical percolation networks had been formed across the matrix (DC conductivity = 2×10-7 S/cm). While, epoxy filled with alumina remained insulative at any loading (~ 10-12 S/cm at 100 Hz). Besides, the tensile strength of the composites was improved by 75% and 37% when filled with 0.5 wt% RGO and alumina, respectively. These results are very useful for preparing multi-functional polymeric materials, which are critically required for packaging industries.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 548 ◽  
Author(s):  
Leonid Agureev ◽  
Valeriy Kostikov ◽  
Zhanna Eremeeva ◽  
Svetlana Savushkina ◽  
Boris Ivanov ◽  
...  

The article presents the study of alumina nanoparticles’ (nanofibers) concentration effect on the strength properties of pure nickel. The samples were obtained by spark plasma sintering of previously mechanically activated metal powders. The dependence of the grain size and the relative density of compacts on the number of nanofibers was investigated. It was found that with an increase in the concentration of nanofibers, the average size of the matrix particles decreased. The effects of the nanoparticle concentration (0.01–0.1 wt.%) on the elastic modulus and tensile strength were determined for materials at 25 °C, 400 °C, and 750 °C. It was shown that with an increase in the concentration of nanofibers, a 10–40% increase in the elastic modulus and ultimate tensile strength occurred. A comparison of the mechanical properties of nickel in a wide range of temperatures, obtained in this work with materials made by various technologies, is carried out. A description of nanofibers’ mechanisms of influence on the structure and mechanical properties of nickel is given. The possible impact of impurity phases on the properties of nickel is estimated. The tendency of changes in the mechanical properties of nickel, depending on the concentration of nanofibers, is shown.


2015 ◽  
Vol 799-800 ◽  
pp. 115-119 ◽  
Author(s):  
Anika Zafiah M. Rus ◽  
Nur Munirah Abdullah ◽  
M.F.L. Abdullah ◽  
M. Izzul Faiz Idris

Graphite reinforced bio-based epoxy composites with different particulate fractions of graphite were investigated for mechanical properties such as tensile strength, elastic modulus and elongation at break. The graphite content was varied from 5 wt.%, 10 wt.%, 15 wt.%, 20 wt.%, 25 wt.%, 30 wt.% by weight percent in the composites. The results showed that the mechanical properties of the composites mainly depend on dispersion condition of the treated graphite filler, aggregate structure and strong interfacial bonding between treated graphite in the bio-based epoxy matrix. The composites showed improved tensile strength and elastic modulus with increase treated graphite weight loading. This also revealed the composites with increasing filler content was decreasing the elongation at break.


2005 ◽  
Vol 475-479 ◽  
pp. 317-320 ◽  
Author(s):  
Jing Pei Xie ◽  
Ji Wen Li ◽  
Zhong Xia Liu ◽  
Ai Qin Wang ◽  
Yong Gang Weng ◽  
...  

The in-situ Ti alloying of aluminium alloys was fulfilled by electrolysis, and the material was made into A356 alloy and used in automobile wheels. The results show that the grains of the A356 alloy was refined and the second dendrites arm was shortened due to the in-situ Ti alloying. Trough 3-hour solution treatment and 2-hour aging treatment for the A356 alloy, the microstructures were homogeneous, and Si particles were spheroid and distribute in the matrix fully. The outstanding mechanical properties with tensile strength (σb≥300Mpa) and elongation values (δ≥10%) have been obtained because the heat treatment was optimized. Compared with the traditional materials, tensile strength and elongation were increased by 7.6~14.1% and 7.4~44.3% respectively. The qualities of the automobile wheels were improved remarkably.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Fakhim Babak ◽  
Hassani Abolfazl ◽  
Rashidi Alimorad ◽  
Ghodousi Parviz

We investigate the performance of graphene oxide (GO) in improving mechanical properties of cement composites. A polycarboxylate superplasticizer was used to improve the dispersion of GO flakes in the cement. The mechanical strength of graphene-cement nanocomposites containing 0.1–2 wt% GO and 0.5 wt% superplasticizer was measured and compared with that of cement prepared without GO. We found that the tensile strength of the cement mortar increased with GO content, reaching 1.5%, a 48% increase in tensile strength. Ultra high-resolution field emission scanning electron microscopy (FE-SEM) used to observe the fracture surface of samples containing 1.5 wt% GO indicated that the nano-GO flakes were well dispersed in the matrix, and no aggregates were observed. FE-SEM observation also revealed good bonding between the GO surfaces and the surrounding cement matrix. In addition, XRD diffraction data showed growth of the calcium silicate hydrates (C-S-H) gels in GO cement mortar compared with the normal cement mortar.


Author(s):  
S C Sharma

A well-consolidated composite of Al alloy 6061 reinforced with 4, 8 and 12 wt% garnet was prepared by a liquid metallurgy technique, the composite was heat treated for different ageing durations (T6 treatment), and its mechanical properties were determined by destructive testing. The results of the study indicated that, as the garnet particle content in the composites increased, there were marked increases in the ultimate tensile strength, compressive strength and hardness but there was a decrease in the ductility. There was an improvement in the tensile strength, compressive strength, and hardness with ageing due to precipitation. Precipitation in Al alloy 6061, with and without garnet particulate reinforcement, was studied using transmission electron microscopy. The fracture behaviour of the composites was altered significantly by the presence of garnet particles and the crack propagation through the matrix, and the reinforcing particle clusters resulted in final fracture.


2018 ◽  
Vol 53 (13) ◽  
pp. 1815-1826
Author(s):  
Sheng Cai Tan ◽  
Jimmy KW Chan ◽  
Kian Ping Loh

This paper aims to investigate the effect of co-milling-assisted exfoliation of graphite into polyethylene and alumina matrices on the mechanical properties of the composites. Tensile mechanical properties of composite materials based on polyethylene reinforced with graphite and graphite-derived fillers at 0–0.75 wt% loading were investigated, while hardness and flexural properties of alumina composites with 0.25 wt% loading of the same additives were assessed. Exfoliated graphite, applied at 0.25–0.75 wt% in pre-exfoliated form or in a co-milling-assisted fashion, has been demonstrated to be effective in enhancing the tensile strength of polyethylene composites. Similar enhancement in hardness and flexural properties was observed in alumina composites with 0.25 wt% loading of the exfoliated graphite. Co-milling-assisted exfoliated graphite nanoplatelets additive introduction has been found to effect a more desirable mechanical properties enhancement in the composites investigated in this study.


Sign in / Sign up

Export Citation Format

Share Document