The Effect of Different CeO2 Addition on Performance of Ni-WC Composite Coating by Vacuum Fusion Sintering

2013 ◽  
Vol 750-752 ◽  
pp. 2052-2056 ◽  
Author(s):  
Lu Miao ◽  
Ya Nan Wang ◽  
Yan Hui Li

By vacuum fusion sintering technique made different CeO2 addition Ni-WC composite coatings on 45 steel. Hardness, wear resistance property and corrosion resistance property of the Rare-earth Ni-WC composite coatings were measured and analyzed by Rockwell hardness tester,micro-hardness tester, friction wear testing machine and Salt spray corrosion box. The results showed that:The CeO2 content comes up to 0.75% of the coatings` hardness, wear resistance and corrosion resistance property better than those of other coatings.

2007 ◽  
Vol 14 (04) ◽  
pp. 597-600
Author(s):  
A. BISWAS ◽  
U. BHATTACHARJEE ◽  
I. MANNA ◽  
J. DUTTA MAJUMDAR

The present study aims at enhancing the wear resistance and biocompatibility of Ti -6 Al -4 V by forming a thin layer of oxide. Surface oxidation has been carried out by controlled heating of the surface of Ti -6 Al -4 V substrate in air at the temperature ranging from 400–600°C and time from 25–60 h. The phase formed under thermal oxidation was predominantly the rutile and anatase phase. The thickness of the oxide layer varied from 1.5–7.0 μm. The microhardness on the surface was significantly improved as compared to the as-received substrate. Both the corrosion resistance property and biocompatibility were improved.


2014 ◽  
Vol 1082 ◽  
pp. 480-483
Author(s):  
Zhen Ting Wang ◽  
Shi Kui Zhu ◽  
Fan Feng ◽  
Hao Ran Cheng ◽  
Zhi Jie Kang ◽  
...  

Nanostructure WC composite coatings were prepared on surface of Q235 steel by argon arc cladding injection using microstructure WC feeding which were prepared by nanostructure WC powder. The microstructure of the coating were analyzed by scanning electron microscopy (SEM). Phase of the coating were analyzed by energy dispersive spectrometer and X-Ray diffract meter, moreover, microhardness and wear resistance were texted by Microhardness tester (HVST-1000) and friction wear testing machine (MMS-2A). The results show that the combination of coating and substrate is metallurgical bonding. and no Pores and cracks were founded in bonding area. aggregated nanostructure WC particles and nanostructure WC particles uniformly distributed in the coating. The maximum hardness of the coating is 1461 HV. Compared with the Q235 steel, the wear resistance of the coating increased about 15 times.


2013 ◽  
Vol 849 ◽  
pp. 58-61 ◽  
Author(s):  
Yusliza Yusuf ◽  
Nooririnah Binti Omar ◽  
Muhamad Azwar Azhari ◽  
Md Ashadi Bin Md Johari

A Ti-6Al-4V alloy has been widely used as suitable materials for several of application such as aerospace, marine and biomedical application. Although this alloy is excellent in its properties and good corrosion resistance, the applications are limited because of their poor tribological property referring to the wear resistance property due to their low surface hardness. Therefore, it is inevitable to improve the wear properties of Ti-6Al-4V without detrimental the initial corrosion resistance properties even increasing it for better result. Over the years, various methods of surface treatments for Ti-6Al-4V have been studied and most frequently used are laser treatment, plasma nitriding process, PVD coating and also duplex coating. For each of the surface treatment discussed, several type of corrosion behavior have been studied with the conclusion is comparable to each other. In general, throughout these techniques, the wear resistance property of Ti-6Al-4V was improved and simultaneously improving the corrosion resistance property.


2007 ◽  
Vol 534-536 ◽  
pp. 1573-1576 ◽  
Author(s):  
Yuji Kawakami ◽  
Fujio Tamai ◽  
Takashi Enjoji ◽  
Kazuki Takashima ◽  
Masaaki Otsu

Austenitic stainless steel has been used as a corrosion resistance material in tough corrosive circumstance. However, austenitic stainless steel has poor wear resistance property due to its low hardness. Tungsten Carbide alloys (WC) are widely used as tooling materials, because of their high hardness and excellent wear resistance property. In this investigation, we apply powder composite process to obtain hard layer of Stainless steel. The composite material was fabricated from planetary ball milled WC powder and SUS316L stainless steel powder and sintered by Pulsed Current Sintering (PCS) method. We also added TiC powder as a hard particle in WC layer. Evaluations of wear properties were performed by pin-on-disk wear testing machine, and a remarkable improvement in wear resistance property was obtained. The weight loss rate of the composite was 1/10 of SUS316L. In addition, it was found that TiC hard particle addition has a positive effect on the wear resistance property. EPMA investigation showed good dispersion of WC hard phase and TiC hard particle with SUS316L matrix.


2011 ◽  
Vol 337 ◽  
pp. 87-90 ◽  
Author(s):  
Xiao Juan Wu ◽  
Zheng Jun Liu ◽  
Guo De Li

The high-phosphorus electroless Ni–P plating coating with 11.64 at.% was prepared by electroless technology. By means of x-ray diffraction and scanning electron microscopy, the morphologies and phase structures of coating were analyzed. Furthermore, the mechanical properties of coating were studied by micro-hardness tester and universal friction-wear testing machine. The results reveal that, with increasing heat-treatment temperatures, the hardness and the wear resistance of the coating are enhanced increasingly. Treated by 1 hour at 500 oC, the hardness and the wear resistance both display a optimum value, i.e. 1004 HV and 1.5×10-3g, respectively. The thermal shock test suggests that between coating and matrix exist a perfect cohesion.


2010 ◽  
Vol 146-147 ◽  
pp. 1638-1641
Author(s):  
Yuan Bin Zhang ◽  
Huai Xue Li ◽  
Kai Zhang

To improve the wear resistance of Titanium alloy, TiAl intermetallic claddings were fabricated on TC4 substrate using laser melting deposition technology. Optical microscope, scan electron microscope (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction meter were applied to investigate the deposited TiAl layer and their interface with substrate. Using hardness tester and M-2000 wear testing machine, hardness, frictional coefficient and wear resistance of the TiAl layers and TC4 alloy were tested. It was indicated that the deposited TiAl layers were well integrated with TC4 substrate, γ-TiAl and Ti3Al dual phase microstructure was formed in the deposited layer. With higher hardness and lower friction coefficient, the deposited TiAl layer improved the wear resistance obviously comparing to TC4 titanium alloy substrate.


Alloy Digest ◽  
2003 ◽  
Vol 52 (9) ◽  

Abstract Crucible CPM S30V is a martensitic stainless steel designed with a combination of toughness, wear resistance, and corrosion resistance equal to or better than 440C. This datasheet provides information on composition, physical properties, microstructure, hardness, and elasticity as well as fracture toughness. It also includes information on corrosion and wear resistance as well as heat treating and machining. Filing Code: SS-891. Producer or source: Crucible Service Centers.


2020 ◽  
Vol 59 (1) ◽  
pp. 340-351
Author(s):  
Lin Yinghua ◽  
Ping Xuelong ◽  
Kuang Jiacai ◽  
Deng Yingjun

AbstractNi-based alloy coatings prepared by laser cladding has high bonding strength, excellent wear resistance and corrosion resistance. The mechanical properties of coatings can be further improved by changing the composition of alloy powders. This paper reviewed the improved microstructure and mechanical properties of Ni-based composite coatings by hard particles, single element and rare earth elements. The problems that need to be solved for the particle-reinforced nickel-based alloy coatings are pointed out. The prospects of the research are also discussed.


2014 ◽  
Vol 789 ◽  
pp. 495-500
Author(s):  
Bing Ying Wang ◽  
Qing Hao Shi ◽  
Wen Long Zhang

The polyurea was modified by adding different amounts of nanometer ZnO. The corrosion behavior of polyurea/primer composite coating system in wet-dry cyclic environment of 3.5% NaCl solution was studied by using the Electrochemical Impedance Spectroscopy (EIS) measurement and adhesion test technology. The experimental result showed that, different mass fractions of nanometer ZnO had different influences on the corrosion resistance property of coating. When the mass fraction of nanometer ZnO was 5%, the composite coating had the largest protective action. The corrosion resistance property of nanometer ZnO can be improved by increasing the density of polyurea coating, however, the corrosion resistance property of polyurea coating will be weakened in case of exceeding the critical adding amount.


2012 ◽  
Vol 501 ◽  
pp. 316-320
Author(s):  
Jian Zhang Guo ◽  
Bin Xu

In order to improve the surface property of the steel tire mold, carbon steels were processed by electroless Ni-P and Ni-P-PTFE under contrast experiment. The coatings were characterized by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS). The wear resistance and corrosion resistance of the coatings were explored by tribometer, salt spray cabinet and advanced electrochemical system. The experimental results showed that the Ni-P coating was amorphous structure, and the Ni-P-PTFE coating was micro-pore structure; The wear resistance of Ni-P-PTFE coating was superior to Ni-P coating; In view of the micro-pore structure, the corrosion resistance of Ni-P-PTFE coating was worse than Ni-P coating, but they were all superior to carbon steels, and the service life of the steel tire mold were improved.


Sign in / Sign up

Export Citation Format

Share Document