An Evaluation of the Seismic Performance of a Traditional Timber Building in Istanbul, Based on the Material Deterioration, with the Finite Elements Method

2013 ◽  
Vol 778 ◽  
pp. 470-477
Author(s):  
Hülya Dışkaya ◽  
Oğuz Ceylan

This paper endeavors to identify the structural characteristics that render traditional timber buildings in Istanbul earthquake-resistant even ifthey are in a deteriorated state. A traditional timber building of approximately 110 years old located in the Historical Peninsula was selected as a subject for the finite elements model. According to the structural material analysis and the condition of the elements of the load-bearing system, three modelling criteria were chosen to classify the strength capacity of the building. These are: an undamaged (new) building, a 110 year-old building with material defects, and a building with structural decay and broken node points. Seismic data from the 1999 Adapazarı and Düzce earthquakes were used for the modelling. The relative floor displacements of the systems were investigated and theresults were evaluated by comparing the cross-sectional load-bearing capacities

2011 ◽  
Vol 189-193 ◽  
pp. 2784-2787 ◽  
Author(s):  
Yu Li Liu ◽  
Gang Yao Zhao ◽  
Jin Zhang ◽  
He Yang

In rotary-draw bending process of thin-walled rectangular tube, cross-sectional distortion is an unwanted byproduct, which is closely related to geometry parameters. To study the effects of geometry parameters on cross-sectional distortion, a 3-D finite-elements model was built under the ABAQUS/Explicit environment, and its reliability was validated by experiments. Then, simulation and analysis of the influence laws of geometrical parameters on cross-sectional deformation degree were carried out. The results show that increases with the increase of b/h and decreases with the increase of R/h when b/h>1. However, R/h has little influence on δh when b/h≤1. And the influence of b on δh is larger than that of h, and the effect of h on δh is larger than that of R.


TAPPI Journal ◽  
2013 ◽  
Vol 12 (3) ◽  
pp. 17-23 ◽  
Author(s):  
WANHEE IM ◽  
HAK LAE LEE ◽  
HYE JUNG YOUN ◽  
DONGIL SEO

Preflocculation of filler particles before their addition to pulp stock provides the most viable and practical solution to increase filler content while minimizing strength loss. The characteristics of filler flocs, such as floc size and structure, have a strong influence on preflocculation efficiency. The influence of flocculant systems on the structural characteristics of filler flocs was examined using a mass fractal analysis method. Mass fractal dimensions of filler flocs under high shear conditions were obtained using light diffraction spectroscopy for three different flocculants. A single polymer (C-PAM), a dual cationic polymer (p-DADMAC/C-PAM) and a C-PAM/micropolymer system were used as flocculants, and their effects on handsheet properties were investigated. The C-PAM/micropolymer system gave the greatest improvement in tensile index. The mass fractal analysis showed that this can be attributed to the formation of highly dense and spherical flocs by this flocculant. A cross-sectional analysis of the handsheets showed that filler flocs with more uniform size were formed when a C-PAM/micropolymer was used. The results suggest that a better understanding of the characteristics of preflocculated fillers and their influence on the properties of paper can be gained based on a fractal analysis.


2017 ◽  
Vol 68 (1) ◽  
pp. 94-100
Author(s):  
Oana Tanculescu ◽  
Adrian Doloca ◽  
Raluca Maria Vieriu ◽  
Florentina Mocanu ◽  
Gabriela Ifteni ◽  
...  

The load-bearing capacity and fracture pattern of direct inlay-retained FRC FDPs with two different cross-sectional designs of the ponticwere tested. The aim of the study was to evaluate a new fibre disposition. Two types of composites, Filtek Bulk Fill Posterior Restorative and Filtek Z250 (3M/ESPE, St. Paul, MN, USA), and one braided polyethylene fibre, Construct (Kerr, USA) were used. The results of the study suggested that the new tested disposition of the fibres prevented in some extend the delamination of the composite on buccal and facial sides of the pontic and increased the load-bearing capacity of the bridges.


2021 ◽  
Vol 13 (9) ◽  
pp. 1724
Author(s):  
Vojislav Mitić ◽  
Cristina Serpa ◽  
Ivana Ilić ◽  
Markus Mohr ◽  
Hans-Jörg Fecht

Materials science is highly significant in space program investigation, energy production and others. Therefore, designing, improving and predicting advanced material properties is a crucial necessity. The high temperature creep and corrosion resistance of Ni-based superalloys makes them important materials for turbine blades in aircraft engines and land-based power plants. The investment casting process of turbine blades is costly and time consuming, which makes process simulations a necessity. These simulations require fundamental models for the microstructure formation. In this paper, we present advanced analytical techniques in describing the microstructures obtained experimentally and analyzed on different sample’s cross-sectional images. The samples have been processed on board the International Space Station using the MSL-EML device based on electromagnetic levitation principles. We applied several aspects of fractal analysis and obtained important results regarding fractals and Hausdorff dimensions related to the surface and structural characteristics of CMSX-10 samples. Using scanning electron microscopy (SEM), Zeiss LEO 1550, we analyzed the microstructure of samples solidified in space and successfully performed the fractal reconstruction of the sample’s morphology. We extended the fractal analysis on the microscopic images based on samples solidified on earth and established new frontiers on the advanced structures prediction.


2015 ◽  
Vol 52 (10) ◽  
pp. 1490-1495 ◽  
Author(s):  
Naj Aziz ◽  
Ali Mirzaghorbanali ◽  
Jan Nemcik ◽  
Kay Heemann ◽  
Stefan Mayer

An experimental investigation into the performance of two 22 mm diameter, 60 t tensile strength capacity Hilti cable bolts in shear was conducted using the double-shear testing apparatus at the laboratory of the School of Civil, Mining and Environmental Engineering, Faculty of Engineering and Information Sciences, University of Wollongong. The tested cable bolts were (i) Hilti 19 wire HTT-UXG plain strand and (ii) Hilti 19 wire HTT-IXG spirally profiled (smaller cross-sectional area than the plain one) cable bolt, with indentation only on the surface of the outer strands. These cable bolts are of sealed wire construction type, consisting of an outer 5.5 mm diameter wire layer overlying the middle 3 mm diameter wire strands. Both layers are wrapped around a single solid 7 mm diameter strand wire core. The double-shearing test was carried out in 40 MPa concrete blocks, contained in concrete moulds. Cable bolts were encapsulated in concrete using Orica FB400 pumpable grout. Prior to encapsulation, each cable bolt was pre-tensioned initially to 50 kN axial force. A 500 t capacity servocontrolled compression testing machine was used for both tests, and during each test the vertical shear displacement was limited to 70 mm of travel. The rate of vertical shear displacement was maintained constant at 1 mm/min. The maximum shear load achieved for the plain strand cable was 1024 kN, while the spiral cable peak load was 904 kN, before the cable bolt wires began to individually snap, leading to the cable bolt break-up into two sections. It is apparent that spiral profiles of the outer wires weaken both the tensile and shearing strength. Finally, another set of tests was undertaken using the British Standard single-shear approach, producing lower shear strength values.


Author(s):  
A. Sreenivasa Rao ◽  
A. S. Sekhar

The shaft misalignment, even being a common fault in rotating machinery, is not sufficiently studied. The present work addresses effects of misalignment in rotating machinery. An attempt to give a theoretical model for a rotor-coupling-bearing system has been done. The rotor-bearing system including the flexible coupling is modelled using the finite elements. The reaction forces and moments developed due to flexible coupling misalignment both for parallel and angular are derived and introduced in the model. Vibration analyses such as eigen value analysis and unbalance response are carried out for the rotor system with misaligned shafts.


1990 ◽  
Vol 259 (4) ◽  
pp. H1086-H1096 ◽  
Author(s):  
J. M. Capasso ◽  
T. Palackal ◽  
G. Olivetti ◽  
P. Anversa

To determine if aging engenders alterations in the functional properties of the myocardium and ventricular remodeling, the hemodynamic performance and structural characteristics of the left ventricle of male Fischer 344 rats at 4, 12, 20, and 29 mo of age were studied by quantitative physiology and morphology. In vivo assessment of cardiac pump function showed no change up to 20 mo, whereas left ventricular end-diastolic pressure was increased at 29 mo. Moreover, peak rates of pressure rise and decay, stroke volume, ejection fraction, and cardiac output were depressed at the later age interval, demonstrating the presence of ventricular failure at this time. The measurements of chamber size and wall thickness showed that ventricular end-diastolic and end-systolic volumes progressively increased with age with the greatest change occurring at 20-29 mo. Aging was also accompanied by a marked augmentation in the volume fraction of fibrotic areas in the ventricular myocardium that was due to an increase in their number and cross-sectional area with time. These architectural rearrangements, in combination with the abnormalities in ventricular function, resulted in an elevation in the volume of wall stress throughout the cardiac cycle. Wall stress increased by 64, 44, and 50% from 4 to 12, 12 to 20, and 20 to 29 mo of age. In conclusion, aging leads to a continuous rise in wall stress that is not normalized by ventricular remodeling. These two independent processes appear to be responsible for the onset of heart failure in the senescent rat.


Sign in / Sign up

Export Citation Format

Share Document